CS388: Natural Language Processing Lecture 17: Machine Translation I

Greg Durrett

Some slides adapted from Dan Klein, UC Berkeley

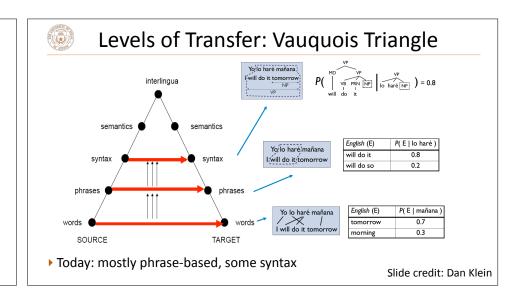
This Lecture

- ▶ MT and evaluation
- Word alignment
- ▶ Language models
- ▶ Phrase-based decoders
- Syntax-based decoders (probably next time)

MT Basics

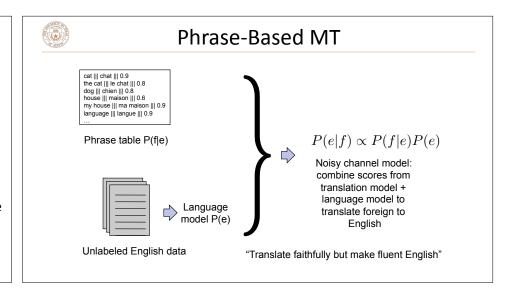
MT Ideally

- I have a friend => ∃x friend(x,self) => J'ai un ami
 J'ai une amie
 - ▶ May need information you didn't think about in your representation
 - ▶ Hard for semantic representations to cover everything
- - ▶ Can often get away without doing all disambiguation same ambiguities may exist in both languages



Phrase-Based MT

- ▶ Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- ▶ How to identify phrases? Word alignment over source-target bitext
- ▶ How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)



Evaluating MT

- ▶ Fluency: does it sound good in the target language?
- ▶ Fidelity/adequacy: does it capture the meaning of the original?
- ▶ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

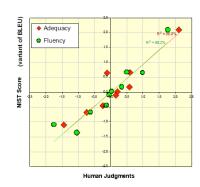
BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Typically $n = 4$, $w_i = 1/4$

$$\mathrm{BP} = \left\{ \begin{array}{ll} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \leq r \end{array} \right. \qquad \text{r = length of reference} \\ c = \mathrm{length of prediction} \end{array}$$

▶ Does this capture fluency and adequacy?

BLEU Score

- Better methods with human-in-the-loop
- ▶ HTER: human-assisted translation error rate
- If you're building real MT systems, you do user studies. In academia, you mostly use **BLEU**

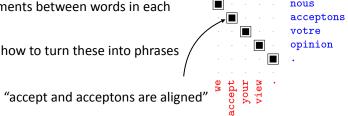


slide from G. Doddington (NIST

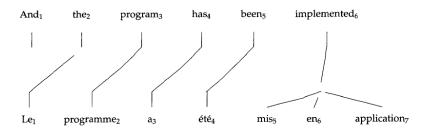
Word Alignment

Word Alignment

- Input: a bitext, pairs of translated sentences nous acceptons votre opinion . | | | we accept your view nous allons changer d'avis | | | we are going to change our minds
- Output: alignments between words in each sentence
 - ▶ We will see how to turn these into phrases



1-to-Many Alignments



Word Alignment

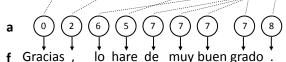
- ▶ Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model
- $\textbf{ Latent variable model: } P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f},\mathbf{a}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}|\mathbf{a},\mathbf{e})P(\mathbf{a})$
- Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

▶ Each French word is aligned to *at most* one English word

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i)$$

e Thank you , I shall do so gladly



- ▶ Set P(a) uniformly (no prior over good alignments)
- $ightharpoonup P(f_i|e_{a_i})$: word translation probability table

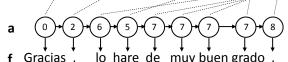
Brown et al. (1993)

HMM for Alignment

▶ Sequential dependence between a's to capture monotonicity

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i|a_{i-1})$$

e Thank you , I shall do so gladly



- Alignment dist parameterized by jump size: $P(a_j a_{j-1})$ –
- -2 -1 0 1 2 3

• $P(f_i|e_{a_i})$: same as before

Brown et al. (1993)

HMM Model

- ▶ Which direction is this?
- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (*garbage collection*)



Evaluating Word Alignment

▶ "Alignment error rate": use labeled alignments on small corpus

Model	AER
Model 1 INT	19.5
HMM E→F	11.4
HMM F→E	10.8
HMM AND	7.1
HMM INT	4.7
GIZA M4 AND	6.9

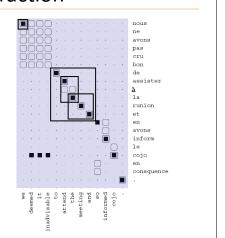
- Run Model 1 in both directions and intersect "intelligently"
- Run HMM model in both directions and intersect "intelligently"

Phrase Extraction

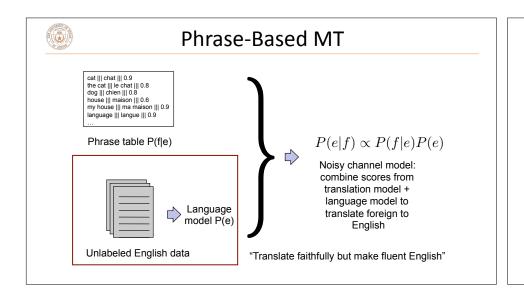
▶ Find contiguous sets of aligned words in the two languages that don't have alignments to other words

d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we

▶ Lots of phrases possible, count across all sentences and score by frequency



Language Modeling



N-gram Language Models

I visited San _____ put a distribution over the next word

Simple generative model: distribution of next word is a multinomial distribution conditioned on previous n-1 words

$$P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})}$$

Maximum likelihood estimate of this probability from a corpus

Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)

Smoothing N-gram Language Models

I visited San _____ put a distribution over the next word!

▶ Smoothing is very important, particularly when using 4+ gram models

$$P(x|\text{visited San}) = (1 - \lambda) \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})}$$

▶ One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize (k=1 is like leave-one-out)

$$P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x) - k}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})}$$

 Kneser-Ney smoothing: this trick, plus low-order distributions modified to capture fertilities (how many distinct words appear in a context)

Engineering N-gram Models

 For 5+-gram models, need to store between 100M and 10B context word-count triples

	w	c	val
	1933	15176585	3
1	1933	15176587	2
	1933	15176593	1
•	1933	15176613	8
	1933	15179801	1
	1935	15176585	298
	1935	15176589	1

(a) Context-Encoding

Δw	Δc	val	١.	Z
1933	15176585	3		
+0	+2	1		
+0	+5	1		
+0	+40	8		
+0	+188	1		
+2	15176585	298		
+0	+4	1		

(b) Context Deltas

$ \Delta w $	$ \Delta c $	val
24	40	3
2	3	3
2	3	3
2	9	6
2	12	3
4	36	15
2	6	3

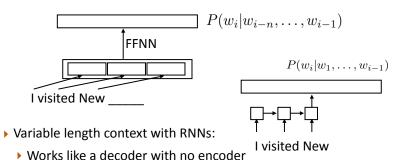
(c) Bits Required

▶ Make it fit in memory by *delta encoding* scheme: store deltas instead of values and use variable-length encoding

Pauls and Klein (2011), Heafield (2011)

Neural Language Models

▶ Early work: feedforward neural networks looking at context



▶ Slow to train over lots of data!

Mnih and Hinton (2003)

Evaluation

- (One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p(x_i|x_1,\ldots,x_{i-1})$
- Perplexity: $2^{-\frac{1}{n}\sum_{i=1}^{n}\log_{2}p(x_{i}|x_{1},...,x_{i-1})}$
 - ▶ NLL (base 2) averaged over the sentence, exponentiated
 - ▶ NLL = -2 -> on average, correct thing has prob 1/4 -> PPL = 4. PPL is sort of like branching factor

Results

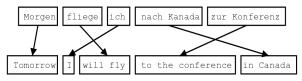
- ▶ Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- ▶ Kneser-Ney 5-gram model with cache: PPL = 125.7
- ▶ LSTM: PPL ~ 60-80 (depending on how much you optimize it)
- Melis et al.: many neural LM improvements from 2014-2017 are subsumed by just using the right regularization (right dropout settings).
 So LSTMs are pretty good

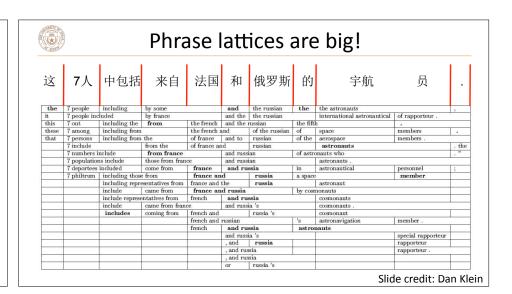
Merity et al. (2017), Melis et al. (2017)

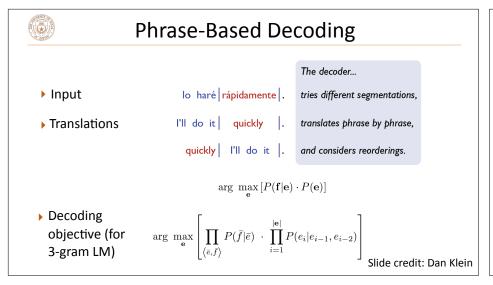
Decoding

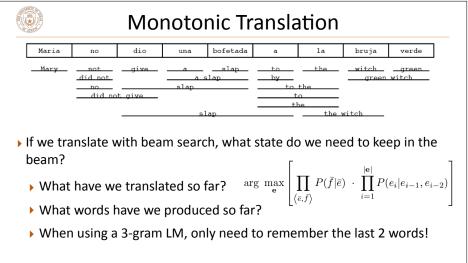
Phrase-Based Decoding

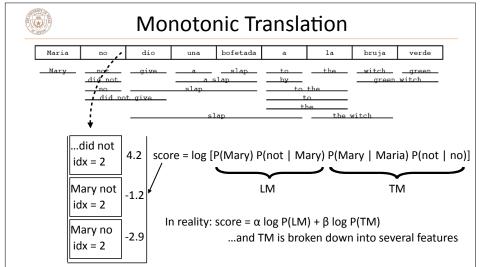
- ▶ Inputs:
 - Language model that scores $P(e_i|e_1,\ldots,e_{i-1})\approx P(e_i|e_{i-n-1},\ldots,e_{i-1})$
 - ▶ Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- ▶ What we want to find: **e** produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:

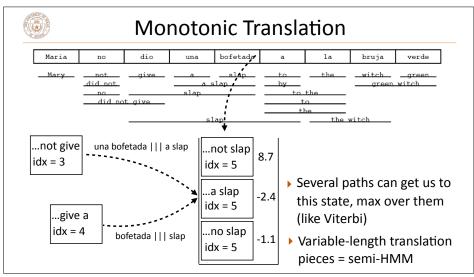


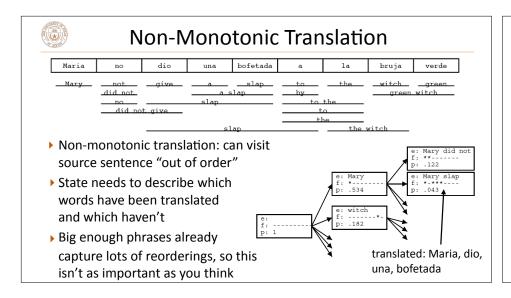


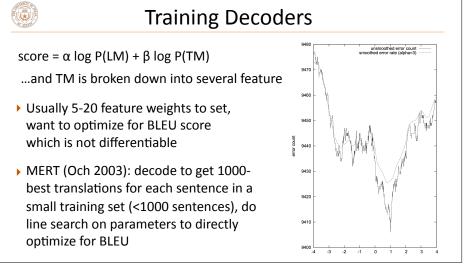












Moses

- ▶ Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 - ▶ Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- ▶ Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
 - ▶ Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2013
- ▶ Next time: results on these and comparisons to neural methods

Syntax

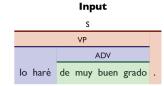
Syntactic MT

▶ Rather than use phrases, use a synchronous context-free grammar

$$NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$$
 $DT \rightarrow [the, la]$
 $DT \rightarrow [the, le]$
 $NN \rightarrow [car, voiture]$
 $JJ \rightarrow [yellow, jaune]$
 $DT_1 JJ_2 NN_3 DT_1 NN_3 JJ_2$
the yellow car la voiture jaune

- ▶ Translation = parse the input with "half" of the grammar, read off the other half
- Assumes parallel syntax up to reordering

Syntactic MT





- Use lexicalized rules, look like "syntactic phrases"
- Leads to HUGE grammars, parsing is slow

Grammar

```
S \rightarrow \langle VP .; I VP . \rangle OR S \rightarrow \langle VP .; you VP . \rangle

VP \rightarrow \langle Io haré ADV ; will do it ADV \rangle

S \rightarrow \langle Io haré ADV .; I will do it ADV . \rangle

ADV \rightarrow \langle Io haré ADV .; I will do it ADV . \rangle

SIide credit: Dan Klein
```


Takeaways

- ▶ Phrase-based systems consist of 3 pieces: aligner, language model, decoder
 - ▶ HMMs work well for alignment
 - ▶ N-gram language models are scalable and historically worked well
 - ▶ Decoder requires searching through a complex state space
- ▶ Lots of system variants incorporating syntax
- ▶ Next time: neural MT