
CS388:	Natural	Language	Processing	
Lecture	18:	Machine	Transla:on	II

Greg	Durrett

Administrivia

‣ Final	project	proposals	due	November	8.	Formal	assignment	posted	
Thursday

‣ Project	2	due	this	Friday

Recall:	Phrase-Based	MT

Unlabeled English data

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
…

Language
model P(e)

Phrase table P(f|e) P (e|f) / P (f |e)P (e)

Noisy channel model:
combine scores from
translation model +
language model to
translate foreign to

English

“Translate faithfully but make fluent English”

}

Recall:	HMM	for	Alignment

Brown	et	al.	(1993)

Thank	you			,					I				shall			do				so					gladly			.e

‣ Sequen:al	dependence	between	a’s	to	capture	monotonicity

0 2 6

Gracias		,						lo		hare		de			muy	buen	grado		.f

5 7 7 7 7 8a

‣ Alignment	dist	parameterized	by	jump	size:

‣ 																	:	word	transla:on	tableP (fi|eai)

§  Want	local	monotonicity:	most	jumps	are	small	
§  HMM	model	(Vogel	96)	

§  Re-es>mate	using	the	forward-backward	algorithm	
 -2 -1 0 1 2 3

P (f ,a|e) =
nY

i=1

P (fi|eai)P (ai|ai�1)

Recall:	Decoding

…did	not
idx	=	2

Mary	not

Mary	no

4.2

-1.2

-2.9

idx	=	2

idx	=	2

score	=	log	[P(Mary)	P(not	|	Mary)	P(Mary	|	Maria)	P(not	|	no)]{ {

LM TM

In	reality:	score	=	α	log	P(LM)	+	β	log	P(TM)
…and	TM	is	broken	down	into	several	features	

This	Lecture

‣ Neural	MT	details

‣ Dilated	CNNs	for	MT

‣ Transformers	for	MT

‣ Syntac:c	MT

Syntac:c	MT

Levels	of	Transfer:	Vauquois	Triangle

Slide	credit:	Dan	Klein
‣ Is	syntax	a	“beher”	abstrac:on	than	phrases?

Syntac:c	MT
‣ Rather	than	use	phrases,	use	a	synchronous	context-free	grammar:	
constructs	“parallel”	trees	in	two	languages	simultaneously

NP	→	[DT1	JJ2	NN3;	DT1	NN3	JJ2]
DT	→	[the,	la]

NN	→	[car,	voiture]
JJ	→	[yellow,	jaune]

the yellow car

‣ Assumes	parallel	syntax	up	to	reordering

DT	→	[the,	le]

la voiture jaune

NP NP

DT1 NN3 JJ2DT1 NN3JJ2

‣ Transla:on	=	parse	the	input	with	“half”	the	grammar,	read	off	other	half

Syntac:c	MT

Slide	credit:	Dan	Klein

‣ Relax	this	by	using	lexicalized	
rules,	like	“syntac:c	phrases”

‣ Leads	to	HUGE	grammars, 
parsing	is	slow

Neural	MT	Details

Encoder-Decoder	MT

Sutskever	et	al.	(2014)‣ SOTA	=	37.0	—	not	all	that	compe::ve…

‣ Sutskever	seq2seq	paper:	first	major	applica:on	of	LSTMs	to	NLP
‣ Basic	encoder-decoder	with	beam	search

Encoder-Decoder	MT
‣ Beher	model	from	seq2seq	lectures:	encoder-decoder	with	ahen:on	
and	copying	for	rare	words

the		movie		was			great

h1 h2 h3 h4

<s>

h̄1

c1

distribu:on	over	vocab	+	copying

…

le

Results:	WMT	English-French

Classic	phrase-based	system:	~33	BLEU,	uses	addi:onal	target-language	data

Rerank	with	LSTMs:	36.5	BLEU	(long	line	of	work	here;	Devlin+	2014)

Sutskever+	(2014)	seq2seq	single:	30.6	BLEU

Sutskever+	(2014)	seq2seq	ensemble:	34.8	BLEU

‣ But	English-French	is	a	really	easy	language	pair	and	there’s	tons	of	data	
for	it!	Does	this	approach	work	for	anything	harder?

Luong+	(2015)	seq2seq	ensemble	with	ahen:on	and	rare	word	handling:	
37.5	BLEU

‣ 12M	sentence	pairs

Results:	WMT	English-German

‣ Not	nearly	as	good	in	absolute	BLEU,	but	not	really	comparable	across	
languages

Classic	phrase-based	system:	20.7	BLEU

Luong+	(2014)	seq2seq:	14	BLEU

‣ French,	Spanish	=	easiest 
German,	Czech	=	harder 
Japanese,	Russian	=	hard	(gramma:cally	different,	lots	of	morphology…)

Luong+	(2015)	seq2seq	ensemble	with	rare	word	handling:	23.0	BLEU

‣ 4.5M	sentence	pairs

MT	Examples

Luong	et	al.	(2015)

‣ NMT	systems	can	hallucinate	words,	especially	when	not	using	ahen:on	
—	phrase-based	doesn’t	do	this

‣ best	=	with	ahen:on,	base	=	no	ahen:on

MT	Examples

Luong	et	al.	(2015)

‣ best	=	with	ahen:on,	base	=	no	ahen:on

MT	Examples

Zhang	et	al.	(2017)

‣ NMT	can	repeat	itself	if	it	gets	confused	(pH	or	pH)

‣ Phrase-based	MT	oyen	gets	chunks	right,	may	have	more	subtle	
ungramma:cali:es

Rare	Words:	Word	Piece	Models
‣ Use	Huffman	encoding	on	a	corpus,	keep	most	common	k	(~10,000)	
character	sequences	for	source	and	target

‣ Captures	common	words	and	parts	of	rare	words

Input:	_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

Output:	_le	_port	ique	_éco	taxe	_de	_Pont	-	de	-	Bui	s

‣ Subword	structure	may	make	it	easier	to	translate

‣Model	balances	transla:ng	and	translitera:ng	without	explicit	switching
Wu	et	al.	(2016)

Rare	Words:	Byte	Pair	Encoding

‣ Count	bigram	character	cooccurrences

Sennrich	et	al.	(2016)

‣Merge	the	most	frequent	pair	of	
adjacent	characters

‣ Input:	a	dic:onary	of	words	represented	as	characters

‣ Final	size	=	ini:al	vocab	+	num	merges.	Oyen	do	10k	-	30k	merges

‣ Simpler	procedure,	based	only	on	the	dic:onary

‣Most	SOTA	NMT	systems	use	this	on	both	source	+	target

Google’s	NMT	System

Wu	et	al.	(2016)

‣ 8-layer	LSTM	encoder-decoder	with	ahen:on,	word	piece	vocabulary	of	
8k-32k	

Google’s	NMT	System

Wu	et	al.	(2016)

Luong+	(2015)	seq2seq	ensemble	with	rare	word	handling:	37.5	BLEU
Google’s	32k	word	pieces:	38.95	BLEU

Google’s	phrase-based	system:	37.0	BLEU
English-French:

Luong+	(2015)	seq2seq	ensemble	with	rare	word	handling:	23.0	BLEU
Google’s	32k	word	pieces:	24.2	BLEU

Google’s	phrase-based	system:	20.7	BLEU
English-German:

Human	Evalua:on	(En-Es)

Wu	et	al.	(2016)

‣ Similar	to	human-level  
performance	on	
English-Spanish

Google’s	NMT	System

Wu	et	al.	(2016)

Gender	is	correct	in	GNMT	
but	not	PBMT

“sled”
“walker”

Backtransla:on
‣ Classical	MT	methods	used	a	bilingual	corpus	of	sentences	B	=	(S,	T)	and	
a	large	monolingual	corpus	T’	to	train	a	language	model.	Can	neural	MT	
do	the	same?

Sennrich	et	al.	(2015)

s1,	t1

[null],	t’1
[null],	t’2

s2,	t2
…

…

‣ Approach	1:	force	the	system	to	
generate	T’	as	targets	from	null	
inputs

‣ Approach	2:	generate	synthe:c 
sources	with	a	T->S	machine 
transla:on	system	(backtransla:on)

s1,	t1

MT(t’1),	t’1

s2,	t2
…

…
MT(t’2),	t’2

Backtransla:on

Sennrich	et	al.	(2015)

‣ parallelsynth:	backtranslate	training	data;	makes	addi:onal	noisy	
source	sentences	which	could	be	useful

‣ Gigaword:	large	monolingual	English	corpus

Dilated	CNNs	for	MT

Dilated	Convolu:ons
‣ Standard	convolu:on:	looks	at	every	token	under	the	filter
‣ Dilated	convolu:on	with	gap	d:	looks	at	every	dth	token

w	=	2,	d	=2:	gap	in	the	filter

‣ Can	chain	successive	dilated	
convolu:ons	together	to	get	a	
wide	recep:ve	field	(see	a	lot	
of	the	sentence)

Strubell	et	al.	(2017)

w=3,	d=1
w=3,	d=2

w=3,	d=4

‣ Top	nodes	see	lots	of	the	sentence,	
but	with	different	processing

CNNs	for	Machine	Transla:on

Kalchbrenner	et	al.	(2016)

‣ “ByteNet”:	operates	over	characters	(bytes)
‣ Encode	source	sequence	w/dilated	
convolu:ons

‣ Predict	nth	target	character	by	
looking	at	the	nth	posi:on	in	the	
source	and	a	dilated	convolu:on	
over	the	n-1	target	tokens	so	far

‣ To	deal	with	divergent	lengths,	tn	
actually	looks	at	snα	where	α	is	a	
heuris:cally-chosen	parameter

‣ Assumes	mostly	monotonic	transla:on

Compare:	CNNs	vs.	LSTMs

Kalchbrenner	et	al.	(2016)

<s>

h̄1

c1

‣ LSTM:	looks	at	previous	word	+	
hidden	state,	ahen:on	over	input‣ CNN:	source	encoding	at	this	

posi:on	gives	us	“ahen:on”,	target	
encoding	gives	us	decoder	context

Ahen:on	from	CNN

Kalchbrenner	et	al.	(2016)

‣Model	is	character-level,	this	
visualiza:on	shows	which	words’s	
characters	impact	the	convolu:onal	
encoding	the	most

‣ Largely	monotonic	but	does	consult	
other	informa:on

Advantages	of	CNNs

Kalchbrenner	et	al.	(2016)

‣ LSTM	with	ahen:on	is	quadra:c:	compute	ahen:on	over	the	whole	input	
for	each	decoded	token

‣ CNN	is	linear!

‣ CNN	is	shallower	too	in	
principle	but	the	conv	layers	
are	very	sophis:cated	(3	
layers	each)

English-German	MT	Results

Kalchbrenner	et	al.	(2016)

Transformers	for	MT

Self-Ahen:on

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Each	word	forms	a	“query”	which	then	
computes	ahen:on	over	each	word	

‣Mul:ple	“heads”	analogous	to	different	convolu:onal	filters.	Use	
parameters	Wk	and	Vk	to	get	different	ahen:on	values	+	transform	vectors

x4

x

0
4

scalar

vector	=	sum	of	scalar	*	vector

↵i,j = softmax(x

>
i xj)

x

0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x

>
i Wkxj) x

0
k,i =

nX

j=1

↵k,i,jVkxj

Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Posi:onal	encoding:	augment	word	embedding	
with	posi:on	embeddings,	each	dim	is	a	sine	
wave	of	a	different	frequency.	Closer	points	=	
higher	dot	products

Transformers

Vaswani	et	al.	(2017)

‣ Encoder	and	decoder	are	both	transformers

‣ Decoder	consumes	the	previous	generated	
token	(and	ahends	to	input),	but	has	no	
recurrent	state

Transformers

Vaswani	et	al.	(2017)

‣ Big	=	6	layers,	1000	dim	for	each	token,	16	heads,	
base	=	6	layers	+	other	params	halved

Visualiza:on

Visualiza:on

Takeaways
‣ Can	build	MT	systems	with	LSTM	encoder-decoders,	CNNs,	or	
transformers

‣Word	piece	/	byte	pair	models	are	really	effec:ve	and	easy	to	use

‣ State	of	the	art	systems	are	ge}ng	prehy	good,	but	lots	of	challenges	
remain,	especially	for	low-resource	se}ngs

