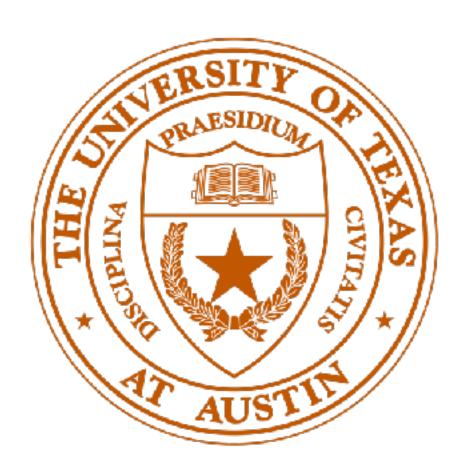
CS388: Natural Language Processing Lecture 23: Unsupervised Learning

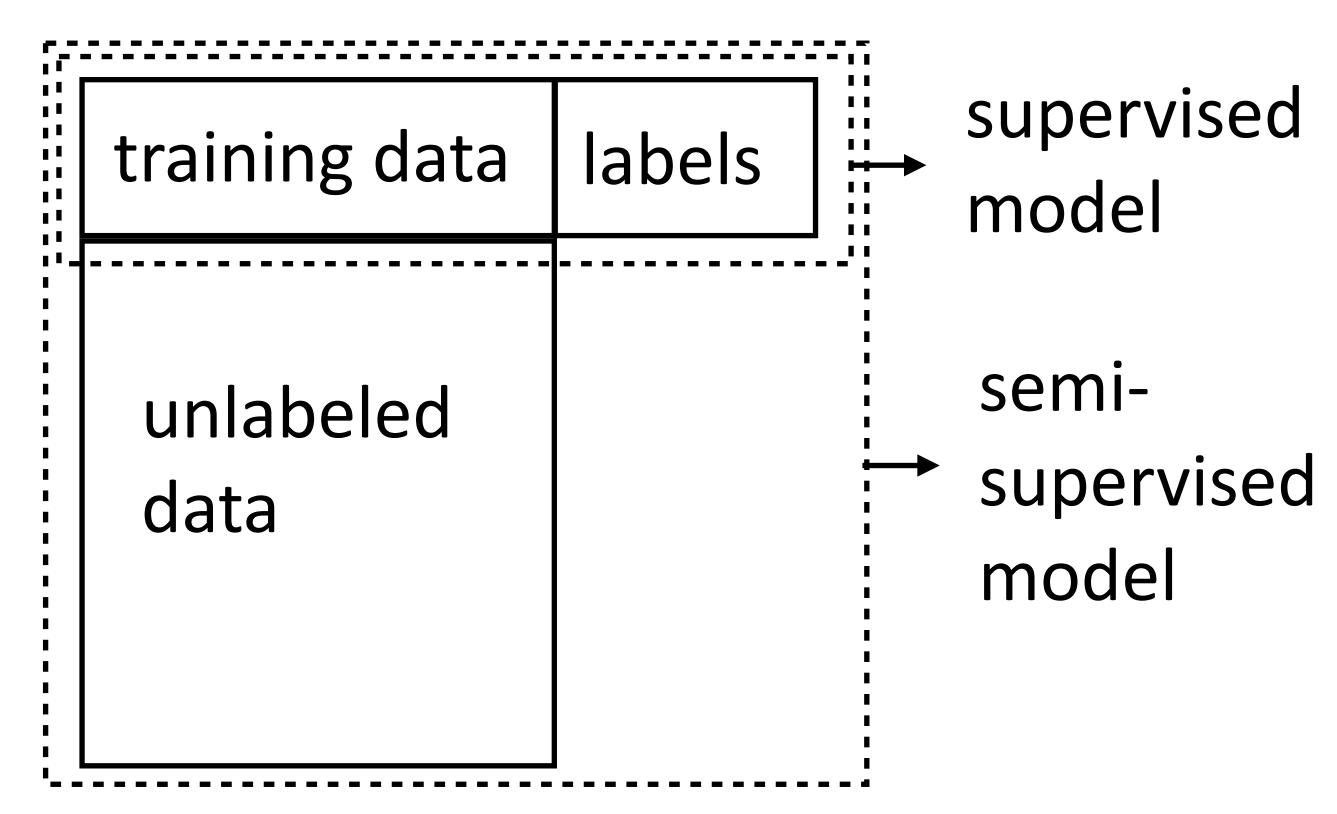


Greg Durrett

Some slides adapted from Leon Gu (CMU), Taylor Berg-Kirkpatrick (CMU)

- Supervised settings:
 - Tagging: POS, NER
 - Parsing: constituency, dependency, semantic parsing
 - ▶ IE, MT, QA, ...
- Semi-supervised models
 - Word embeddings / word clusters (helpful for nearly all tasks)
 - Language models for machine translation
 - Learn linguistic structure from unlabeled data and use it?

What data do we learn from?



Discrete linguistic structure from generative models: unsupervised POS induction

Expectation maximization for learning HMMs

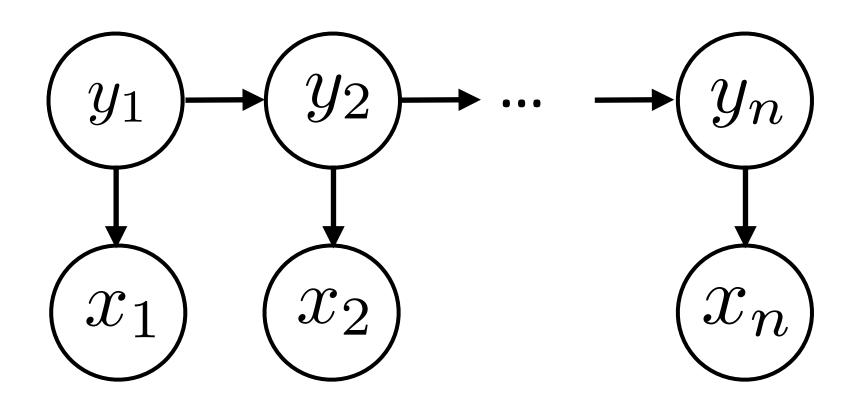
- Continuous structure with generative models: variational autoencoders

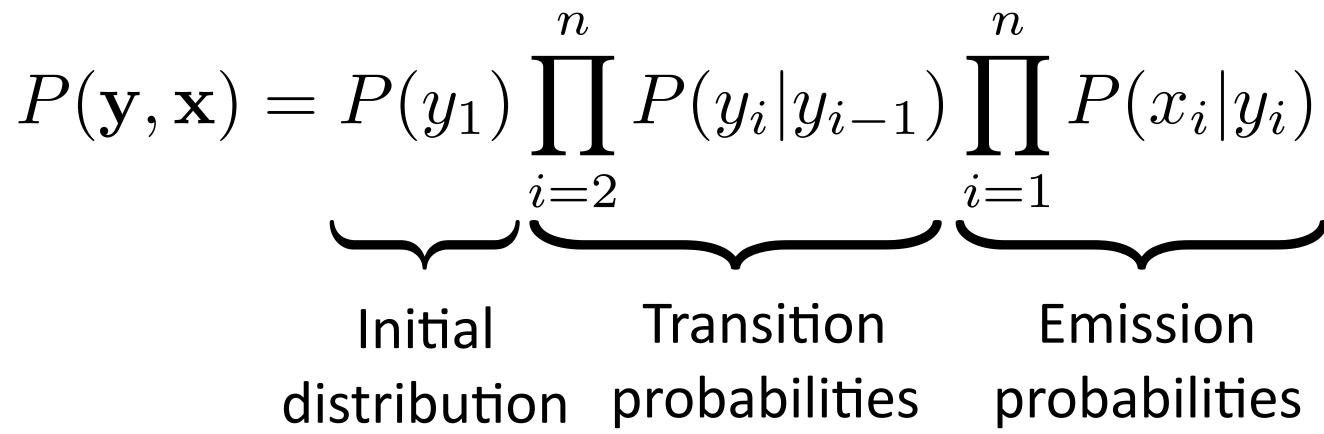
Continuous structure with "discriminative" models: transfer learning

EM for HMMS

Recall: Hidden Markov Models

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$





- Observation (x) depends only on current state (y)
- Multinomials: tag x tag transitions, tag x word emissions
- P(x|y) is a distribution over all words in the vocabulary not a distribution over features (but could be!)

Emission probabilities

Unsupervised Learning

- Can we induce linguistic structure? Thought experiment...
- a b a c c c c
- baccc
- What's a two-state HMM that could produce this?
- What if I show you this sequence?
- a a b c c a a
- What did you do? Use current model parameters + data to refine your model. This is what EM will do

Part-of-Speech Induction

- Input $\mathbf{x} = (x_1, ..., x_n)$ Output y
- Assume we don't have access to labeled examples how can we learn a POS tagger?
- Generative model explains Key idea: optimize $P(\mathbf{x}) = \sum P(\mathbf{y}, \mathbf{x})$ the data \mathbf{x} ; the right HMM makes it look likely У
- Optimizing marginal log-likelihood with no labels y:

$$\mathcal{L}(\mathbf{x}_{1,\dots,D}) = \sum_{i=1}^{D} \log \sum_{\mathbf{y}}$$

$$\mathbf{y} = (y_1, \dots, y_n)$$

hon-convex optimization $P(\mathbf{y}, \mathbf{x}_i)$ problem

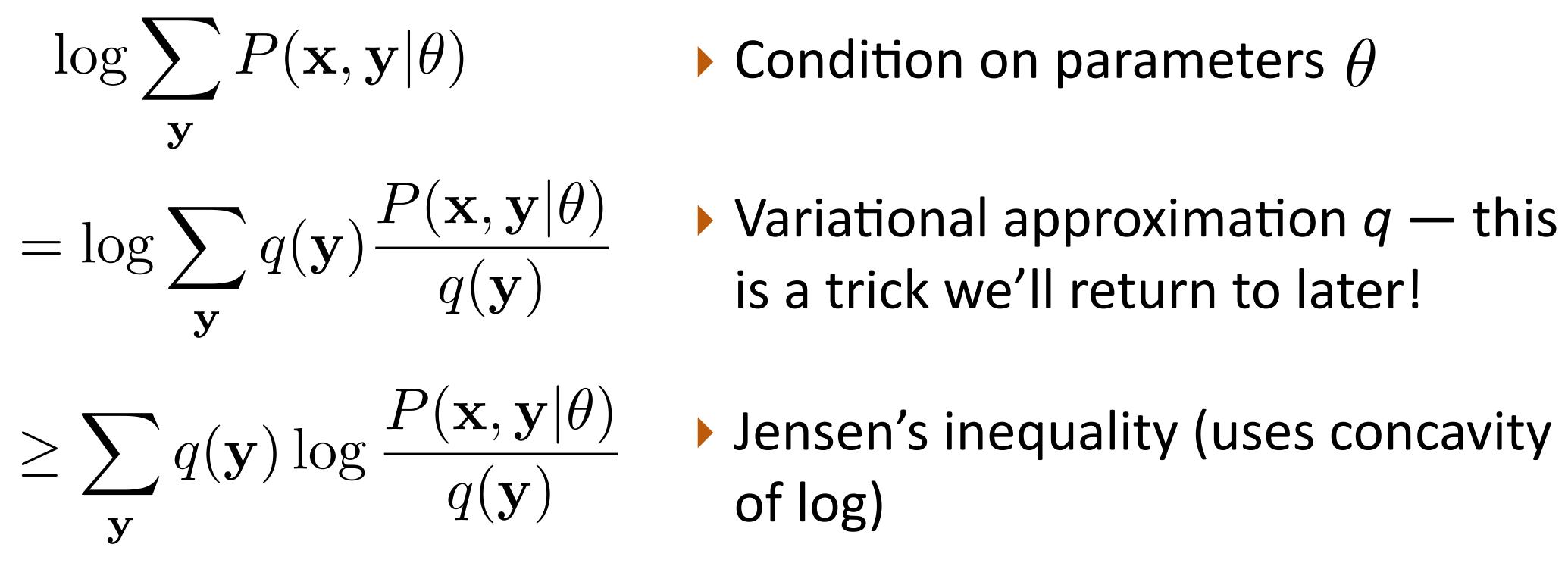
Part-of-Speech Induction

- Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$ Optimizing marginal log-likelihood with no labels y: $\mathcal{L}(\mathbf{x}_{1,...,D}) = \sum \log \sum P(\mathbf{y}, \mathbf{x}_{i})$ i=1 v
- some useful latent structure y (clustering effect)
- EM is just one procedure for optimizing this kind of objective

• Can't use a discriminative model; $\sum P(\mathbf{y}|\mathbf{x}) = 1$, doesn't model \mathbf{x} У

What's the point of this? Model has inductive bias and so should learn

Expectation Maximization



 $= \mathbb{E}_{q(\mathbf{y})} \log P(\mathbf{x}, \mathbf{y}|\theta) + \text{Entropy}[q(\mathbf{y})]$

- Condition on parameters θ
- Jensen's inequality (uses concavity
- Can optimize this lower-bound on log likelihood instead of log-likelihood Adapted from Leon Gu

 $\log \sum P(\mathbf{x}, \mathbf{y}|\theta) \geq \mathbb{E}_{q(\mathbf{y})} \log F$ У

- If $q(\mathbf{y}) = P(\mathbf{y}|\mathbf{x}, \theta)$, this bound ends up being tight
- Expectation-maximization: alternating maximization of the lower bound over q and θ
 - Current timestep = t, have parameters θ^{t-1}
 - E-step: maximize w.r.t. q; that is

Expectation Maximization

$$P(\mathbf{x}, \mathbf{y}|\theta) + \operatorname{Entropy}[q(\mathbf{y})]$$

s,
$$q^t = P(\mathbf{y}|\mathbf{x}, \theta^{t-1})$$

• M-step: maximize w.r.t. θ ; that is, $\theta^t = \operatorname{argmax}_{\theta} \mathbb{E}_{q^t} \log P(\mathbf{x}, \mathbf{y} | \theta)$

Adapted from Leon Gu

EM for HMMs

- Expectation-maximization: alternating maximization • E-step: maximize w.r.t. q; that is, $q^t = P(\mathbf{y}|\mathbf{x}, \theta^{t-1})$ • M-step: maximize w.r.t. θ ; that is, $\theta^t = \operatorname{argmax}_{\theta} \mathbb{E}_{a^t} \log P(\mathbf{x}, \mathbf{y} | \theta)$
- E-step: for an HMM: run forward-backward with the given parameters
- Compute $P(y_i = s | \mathbf{x}, \theta^{t-1}), P($ tag marginals at each position
- M-step: set parameters to optimize the crazy argmax term

$$(y_i = s_1, y_{i+1} = s_2 | \mathbf{x}, \theta^{t-1})$$

tag pair marginals at each position

DT

the

NN

dog

- Recall how we maximized log P(x,y): read counts off data
 - P(the|DT) = 1P(dog|DT) = 0P(the|NN) = 0P(dog|NN) = 1
 - count(DT, the) = 1count(DT, dog) = 0count(NN, the) = 0count(NN, dog) = 1
- Same procedure, but maximizing $P(\mathbf{x}, \mathbf{y})$ in expectation under q means that q specifies fractional counts
- count(DT, the) = 0.9**DT: 0.9** DT: 0.3 count(DT, dog) = 0.3Q NN: 0.1 **NN: 0.7** count(NN, the) = 0.1the dog count(NN, dog) = 0.7

M-Step

P(the | DT) = 0.75P(dog | DT) = 0.25P(the|NN) = 0.125P(dog|NN) = 0.875

Same for transition probabilities **DT**—**NN**: 0.6 DT-DT: 0.1 q NN-DT: 0.2 NN-NN: 0.1 the dog

M-Step

P(DT | DT) = 1/7P(NN | DT) = 6/7P(DT|NN) = 2/3P(NN|NN) = 1/3

Initialize (M-step 0): Emissions P(the | DT) = **0.9** P(the | NN) = 0.05P(dog | DT) = 0.05P(dog|NN) = 0.9P(marsupial | DT) = 0.05P(marsupial|NN) = 0.05Transition probabilities: uniform E-step 1: (all values are approximate) **DT: 0.95** DT: 0.5 **DT: 0.95** DT: 0.05 NN: 0.05 NN: 0.5 NN: 0.05 NN: 0.95 the the marsupial dog

uniform

E-step 1: DT: 0.95 DT: 0.05 DT: 0. NN: 0.05 NN: 0.95 NN: 0. the dog the

M-step 1:

Emissions aren't so different
 Transition probabilities (appro

DT: 0.95 DT: 0.5

 NN: 0.05
 NN: 0.5

 the
 marsupial

Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4

E-step 2: DT: 0.95 DT: 0.05 DT: 0.95 DT: 0.30 NN: 0.05 NN: 0.95 NN: 0.05 NN: 0.05 NN: 0.70 the dog the marsupial

M-step 1:

Emissions aren't so different
 Transition probabilities (appro

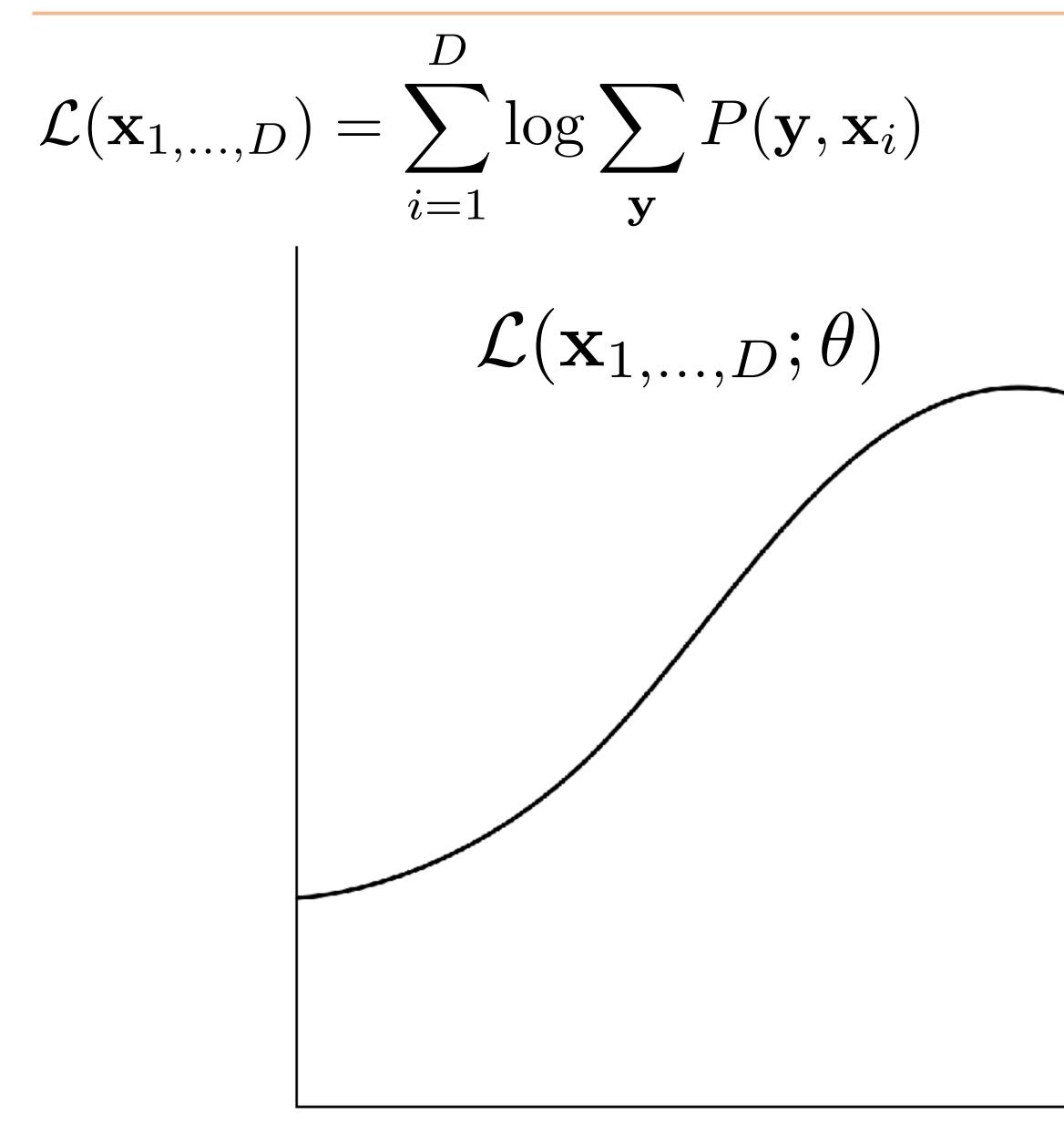
Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4

E-step 2: DT: 0.95 DT: 0.05 DT: 0.95 DT: 0.30 NN: 0.05 NN: 0.95 NN: 0.05 NN: 0.05 NN: 0.70 the dog the marsupial

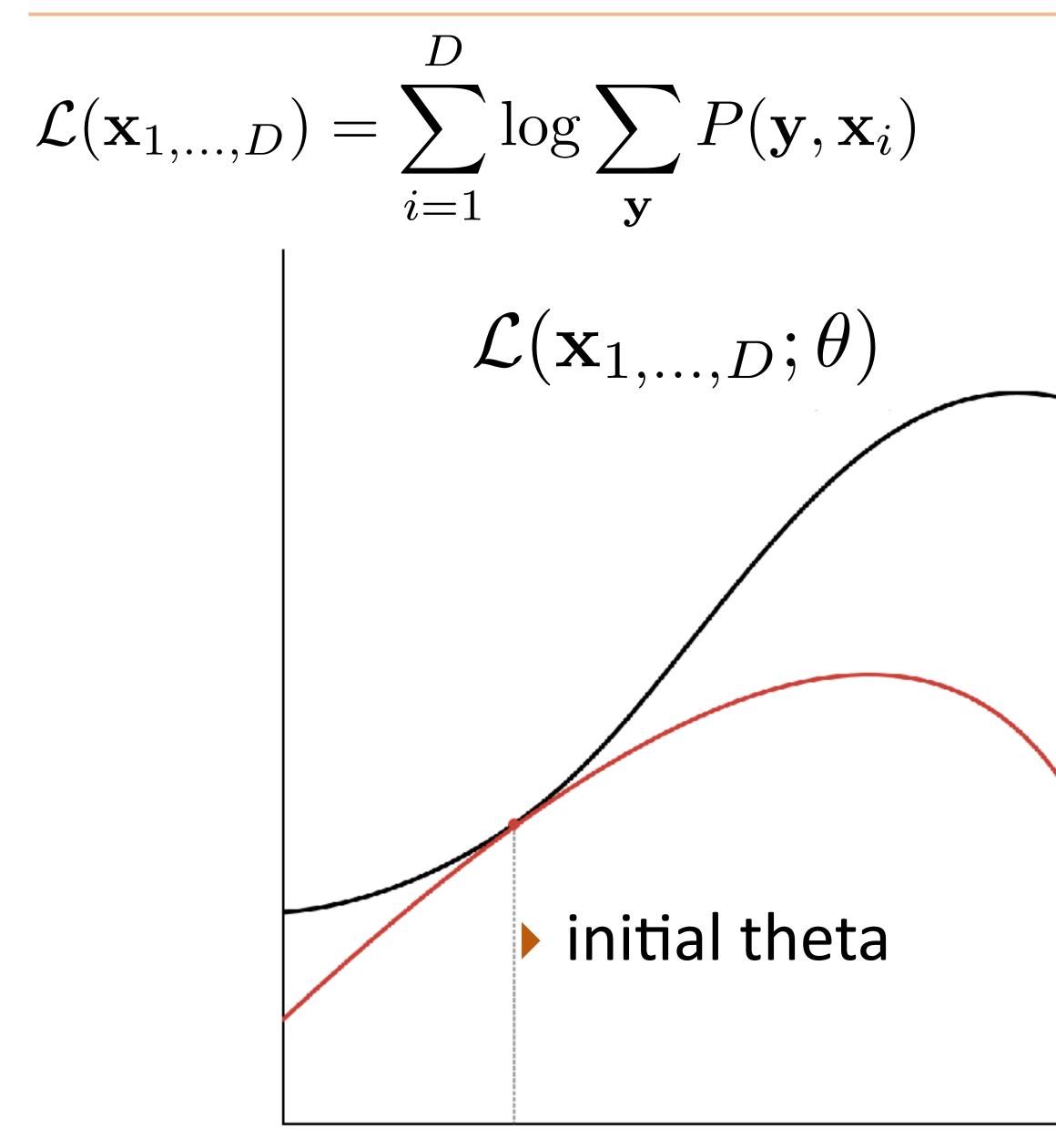
M-step 2:

- Emission P(marsupial|NN) > P(marsupial|DT)
- Remember to tag marsupial as NN in the future!
- Context constrained what we learned! That's how data helped us

- Can think of q as a kind of "fractional annotation"
- E-step: compute annotations (posterior under current model)
- M-step: supervised learning with those fractional annotations
- Initialize with some reasonable weights, alternate E and M until convergence

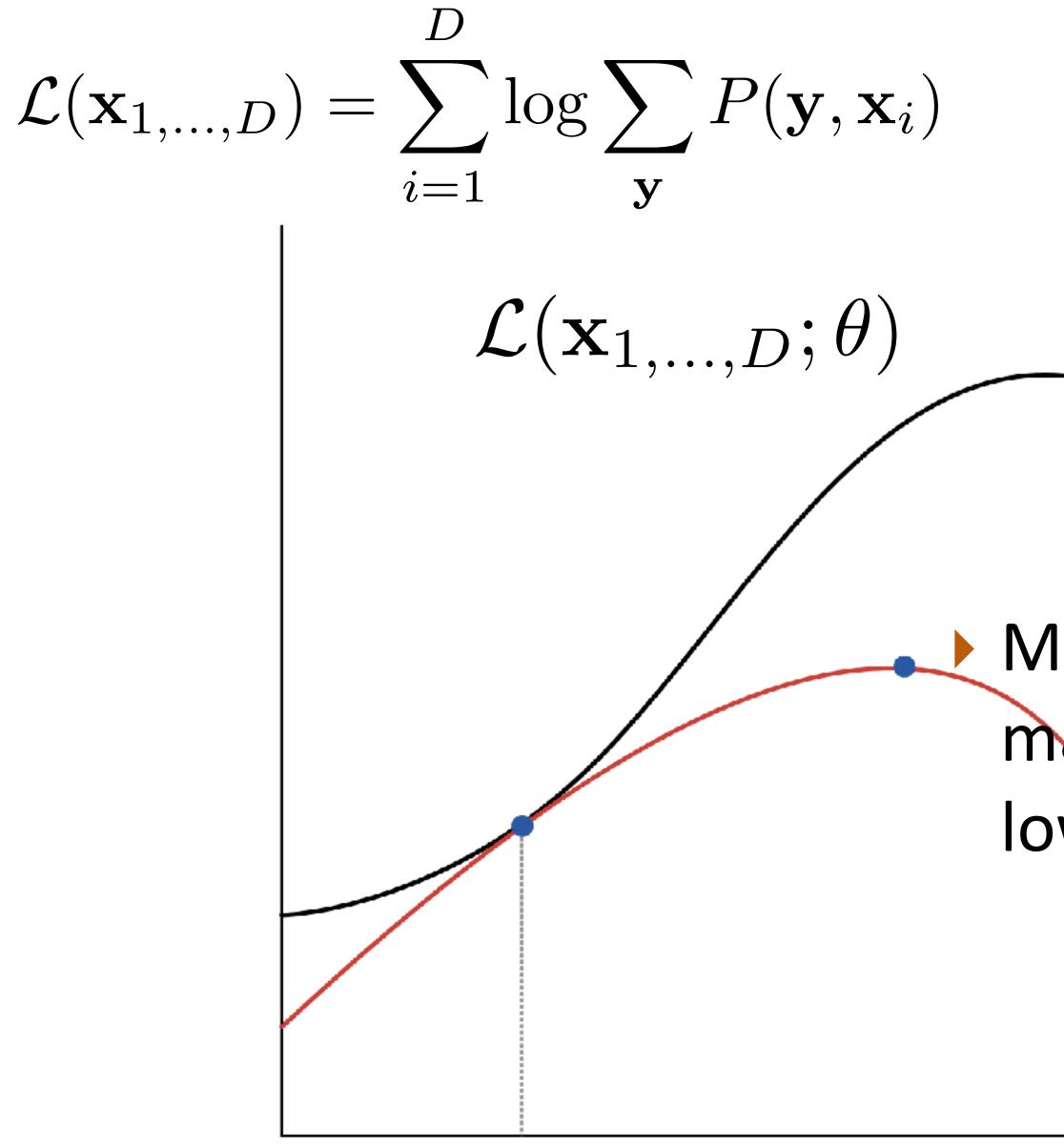


Initialize probabilities $\boldsymbol{\theta}$ repeat Compute expected counts e • Fit parameters $\boldsymbol{\theta}$ until convergence



Initialize probabilities θ
repeat
Compute expected counts e
Fit parameters θ
until convergence

E-step: compute q which gives this lower bound

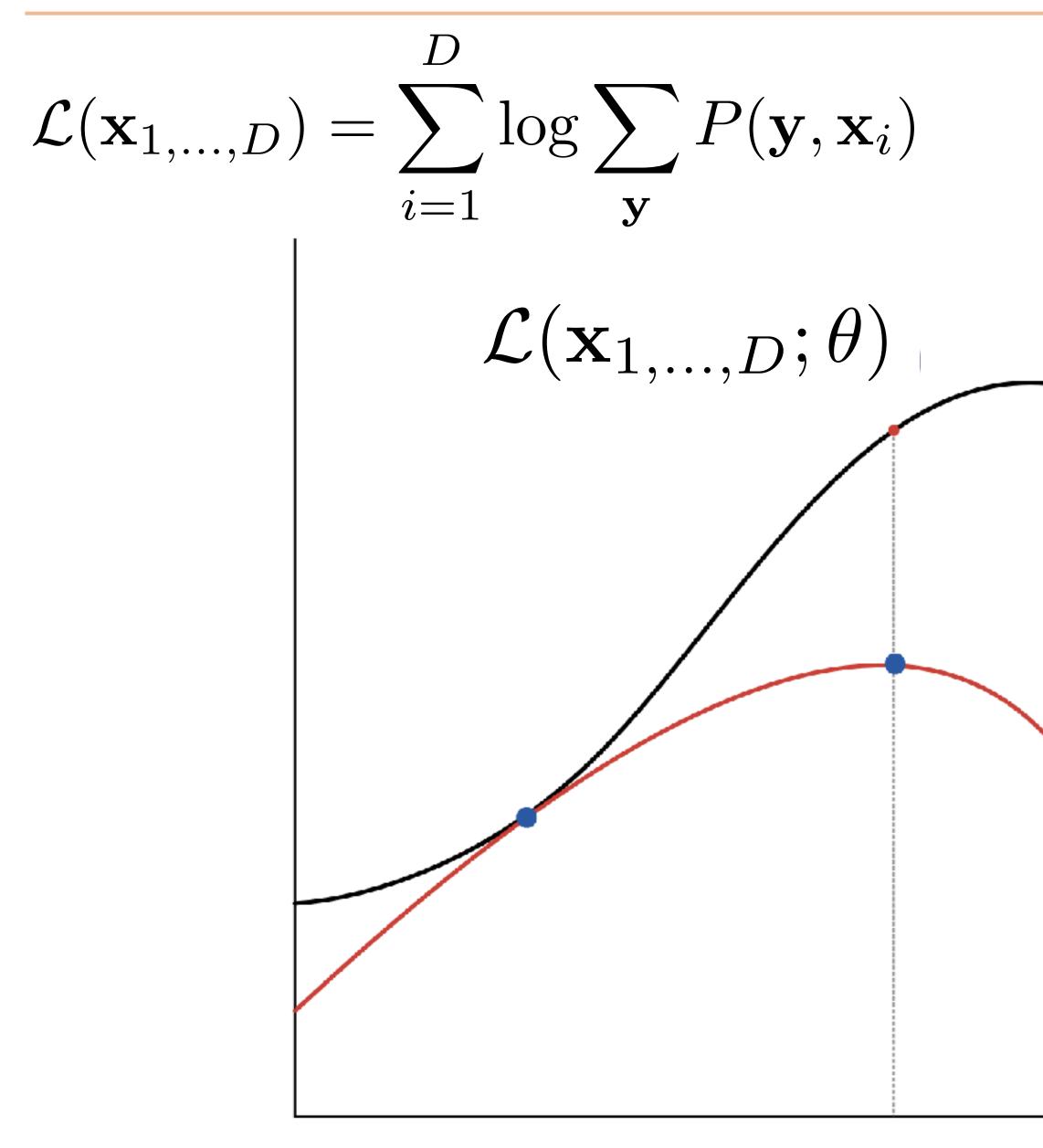


Initialize probabilities $\boldsymbol{\theta}$ repeat Compute expected counts e

• Fit parameters $\boldsymbol{\theta}$

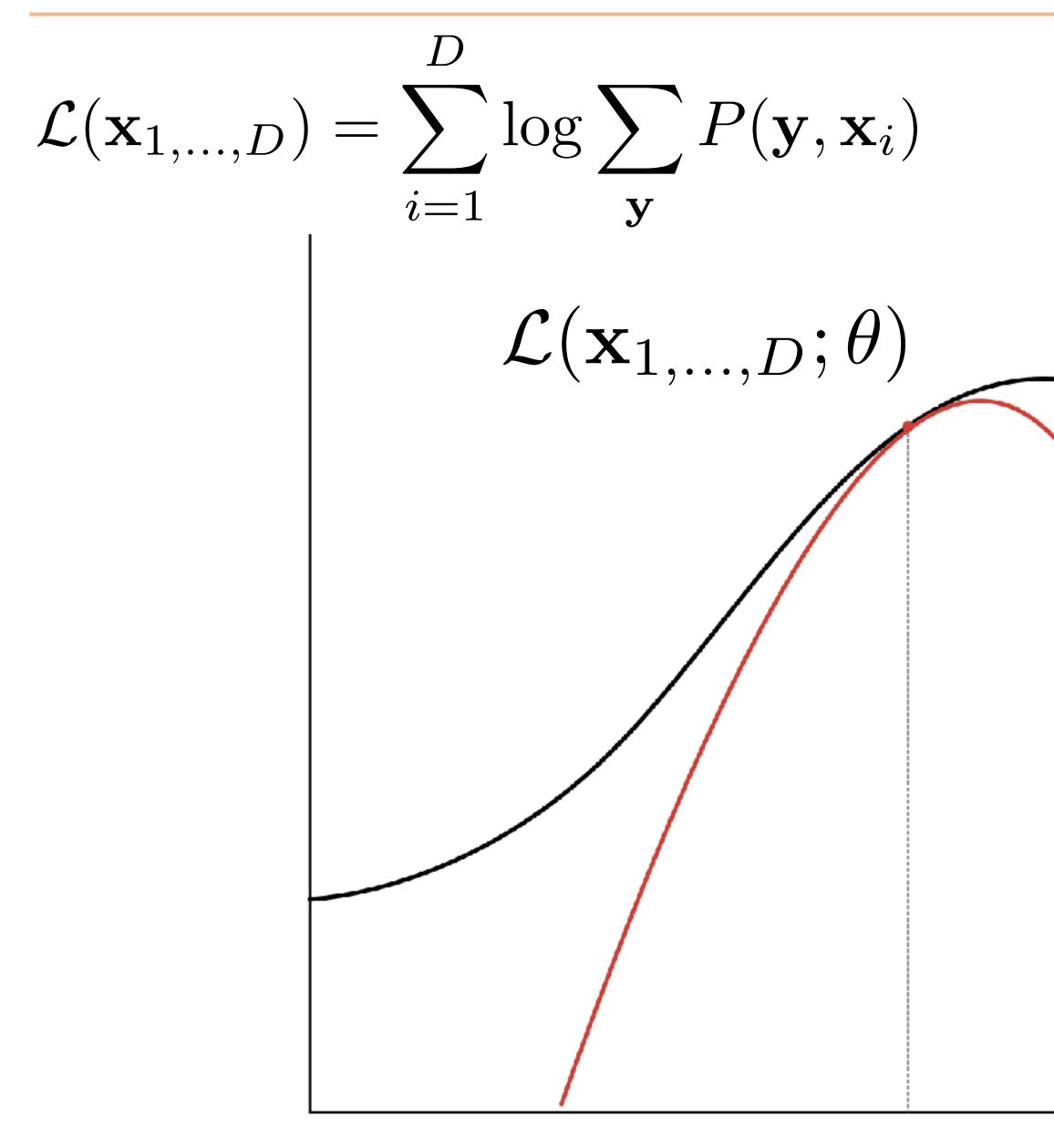
until convergence

M-step: find maximum of lower bound



Initialize probabilities θ
repeat
Compute expected counts e
Fit parameters θ
until convergence

E-step 2: re-estimate q



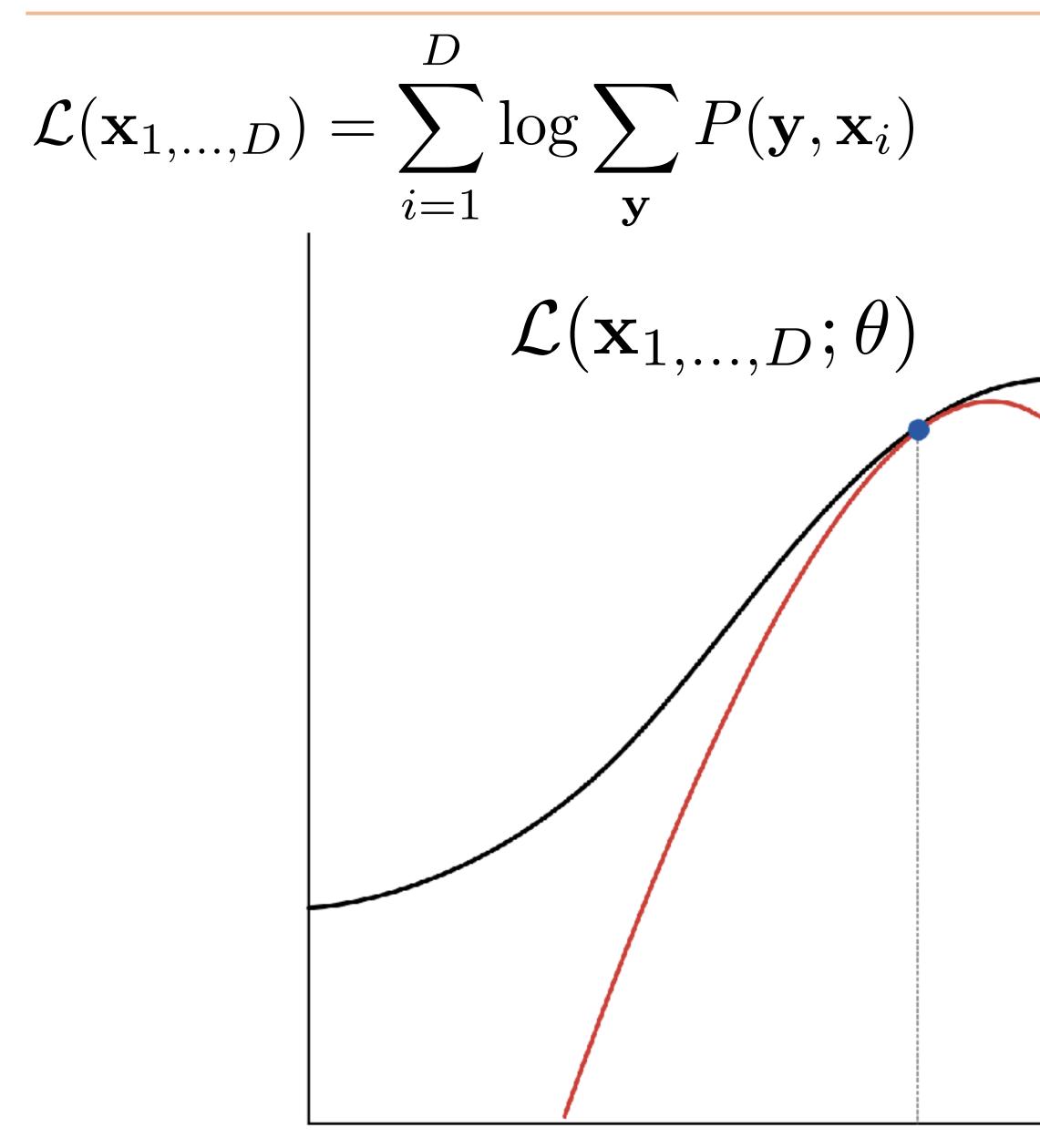
Initialize probabilities θ

repeat

- Compute expected counts e
- Fit parameters θ

until convergence

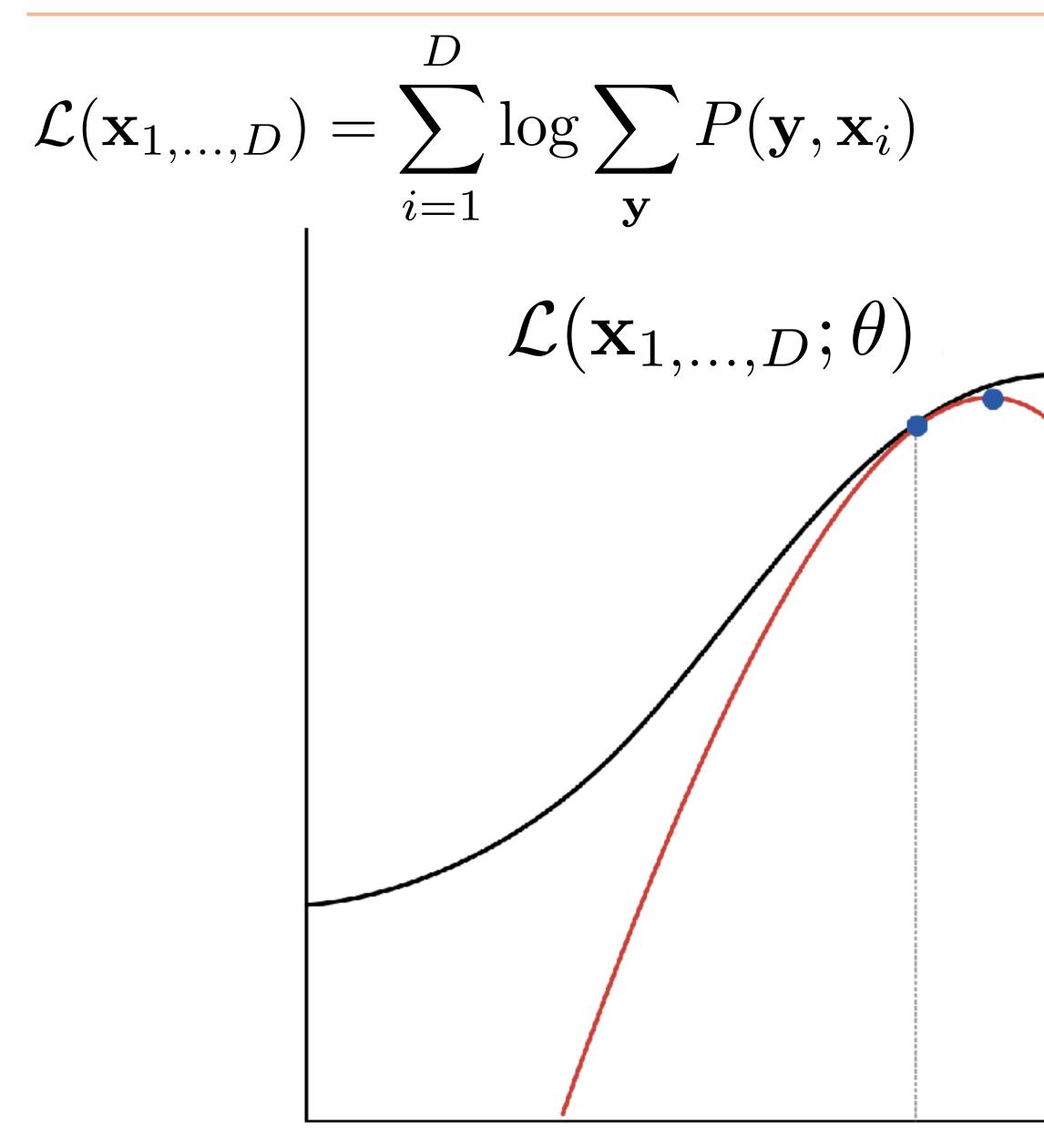
E-step 2: re-estimate q



Initialize probabilities $\boldsymbol{\theta}$ repeat

- Compute expected counts e
- Fit parameters $\boldsymbol{\theta}$

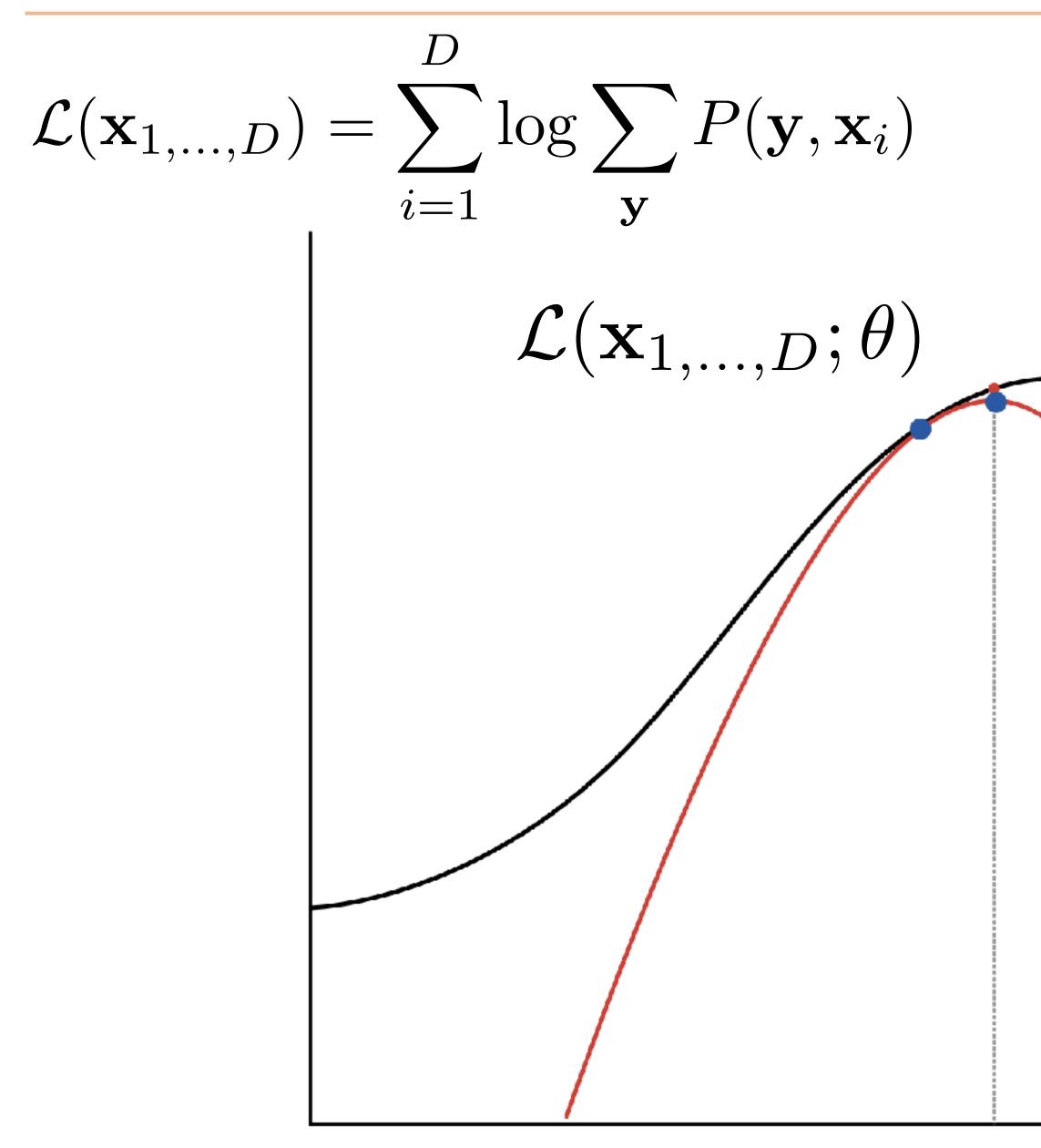
until convergence



Initialize probabilities $\boldsymbol{\theta}$ repeat

- Compute expected counts e
- Fit parameters $\boldsymbol{\theta}$

until convergence



Initialize probabilities $\boldsymbol{\theta}$

repeat

Compute expected counts e

• Fit parameters $\boldsymbol{\theta}$

until convergence

- Merialdo (1994): you have a whitelist of tags for each word
- Learn parameters on k examples to start, use those to initialize EM, run on 1 million words of unlabeled data
- Tag dictionary + data should get us started in the right direction...

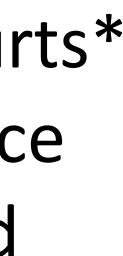
Part-of-speech Induction

Number of tagged sentences used for the initial model										
	0	100	2000	5000	10000	20000	all			
Iter	Iter Correct tags (% words) after ML on 1M words									
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0			
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8			
2	81.8	93.0	95.7	96.1	96.3	96.4	96.4			
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2			
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0			
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8			
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7			
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5			
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4			
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3			
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2			

.

Part-of-speech Induction

- Small amounts of data > large amounts of unlabeled data
- Running EM *hurts* performance once you have labeled data



Human Annotations	0. No em			1. EM only			2. With LP		
Initial data	Τ	K	U	Τ	K	U	Т	K	U
KIN tokens A	72	90	58	55	82	32	71	86	58
KIN types A				63	77	32	78	83	69
MLG tokens B	74	89	49	68	87	39	74	89	49
MLG types B				71	87	46	72	81	57
ENG tokens A	63	83	38	62	83	37	72	85	55
ENG types A				66	76	37	75	81	56
ENG tokens B	70	87	44	70	87	43	78	90	60
ENG types B				69	83	38	75	82	61

Kinyarwanda and Malagasy (two actual low-resource languages)

Label propagation (technique for using dictionary labels) helps a lot, with data that was collected in two hours Garrette and Baldridge (2013)

Two Hours of Annotation

Variational Autoencoders

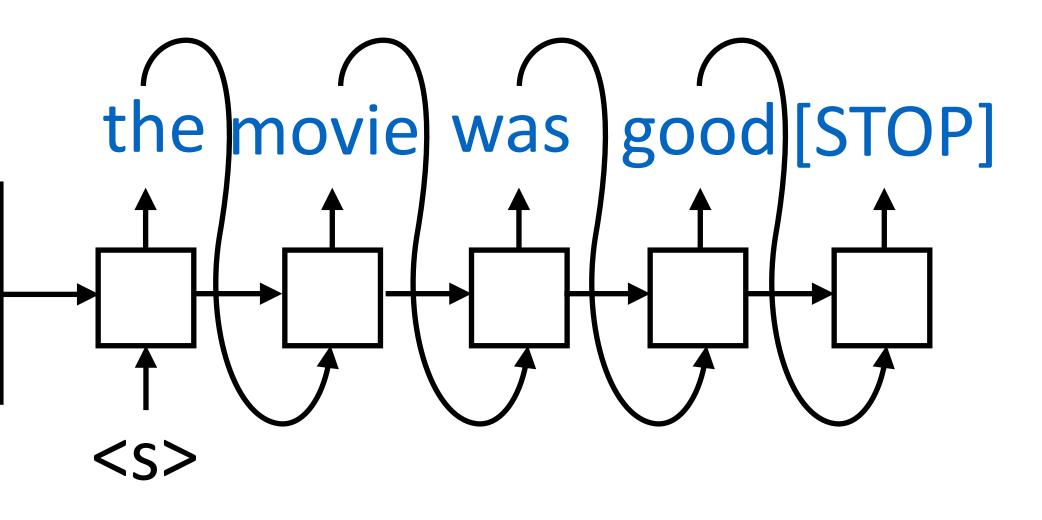
- For discrete latent variables **y**, we optimized: $P(\mathbf{x}) = \sum P(\mathbf{y}, \mathbf{x})$
- What if we want to use continuous latent variables? $P(z, \mathbf{x}) = P(z)P(\mathbf{x}|z)$ $P(\mathbf{x}) = \int P(z)P(\mathbf{x}|z)\partial z$
- Can use EM here when P(z) and P(x|z) are Gaussians
- What if we want P(x|z) to be something more complicated, like an LSTM with z as the initial state?

Continuous Latent Variables

$P(z, \mathbf{x}) = P(z)P(\mathbf{x}|z) \quad | = \mathbf{F}(z) = \mathbf$

> z is a latent variable which should control the generation of the sentence, maybe capture something about its topic

Deep Generative Models



Deep Generative Models

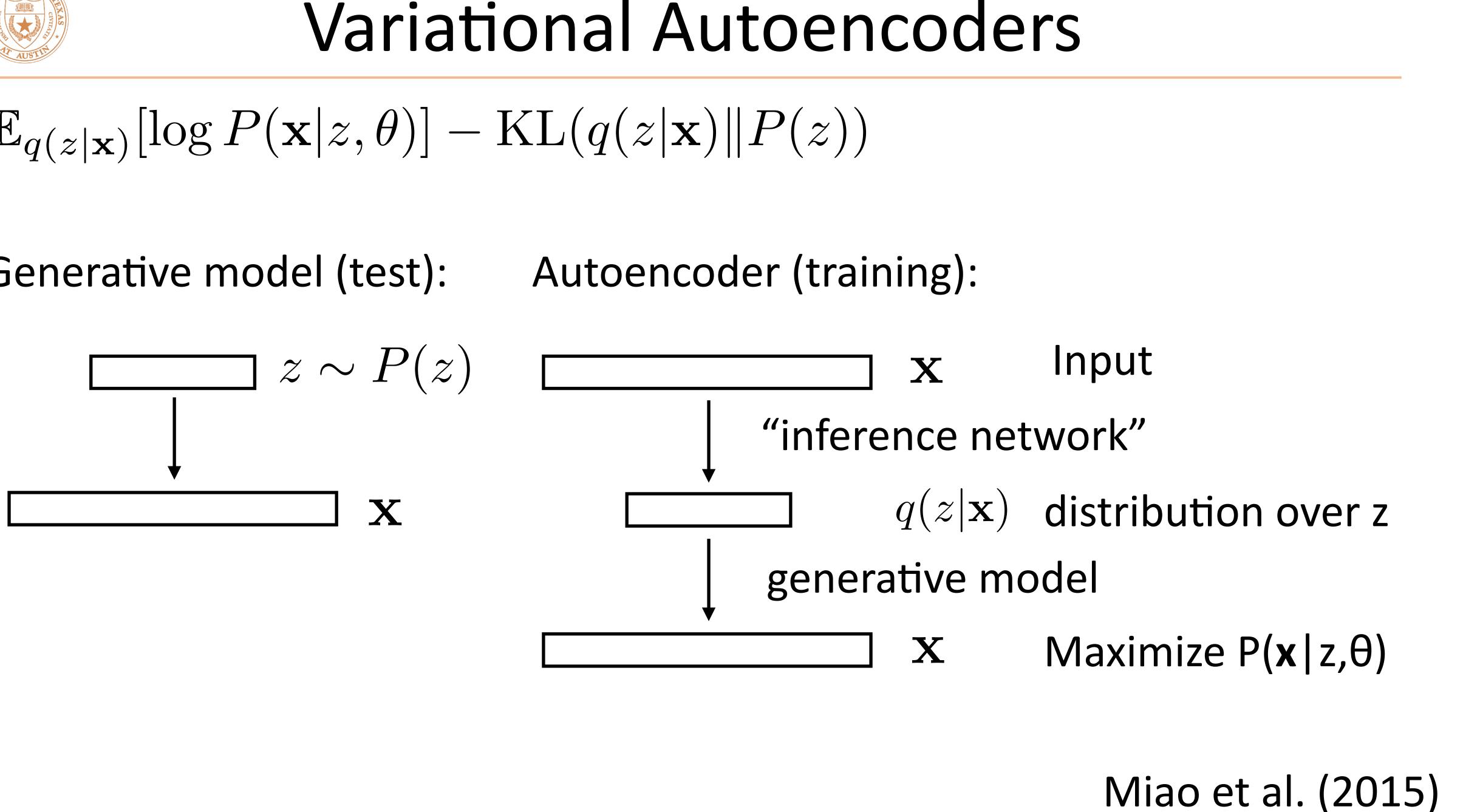
 $\log \int P(\mathbf{x}, z | \theta) = \log \int_{z} q(z) \frac{P(\mathbf{x}, z | \theta)}{q(z)} \ge \int_{z} q(z) \log \frac{P(\mathbf{x}, z | \theta)}{q(z)}$

- $= \mathbb{E}_{q(z|\mathbf{x})} \left[-\log q(z|\mathbf{x}) + \log P(\mathbf{x}, z|\theta) \right]$ $= \mathbb{E}_{q(z|\mathbf{x})} \left[\log P(\mathbf{x}|z, \theta) \right] - \mathrm{KL}(q(z|\mathbf{x}) || P(z))$ "make the data likely under q" "make q close to the prior" (discriminative)
- KL divergence: distance metric over distributions (more dissimilar <=> higher KL)

Jensen

 $\mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] - \mathrm{KL}(q(z|\mathbf{x})||P(z))$

Generative model (test):

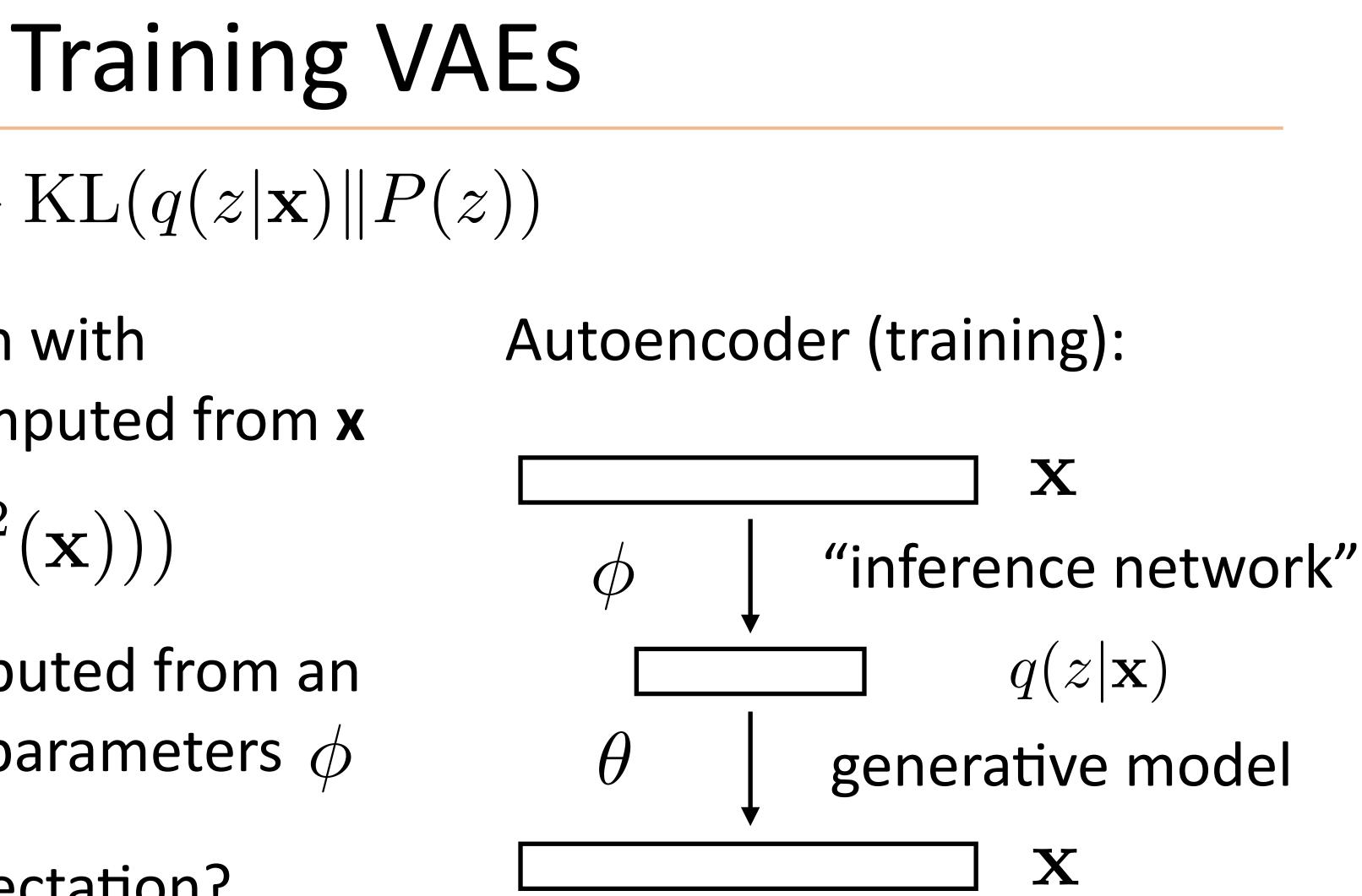


 $\mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] - \mathrm{KL}(q(z|\mathbf{x})||P(z))$

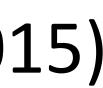
Choose q to be Gaussian with parameters that are computed from **x**

$$q = N(\mu(\mathbf{x}), \operatorname{diag}(\sigma^2(\mathbf{x})))$$

- mu and sigma are computed from an LSTM over **x**, call their parameters ϕ
- How to handle the expectation? Sampling



Miao et al. (2015)



Training VAEs

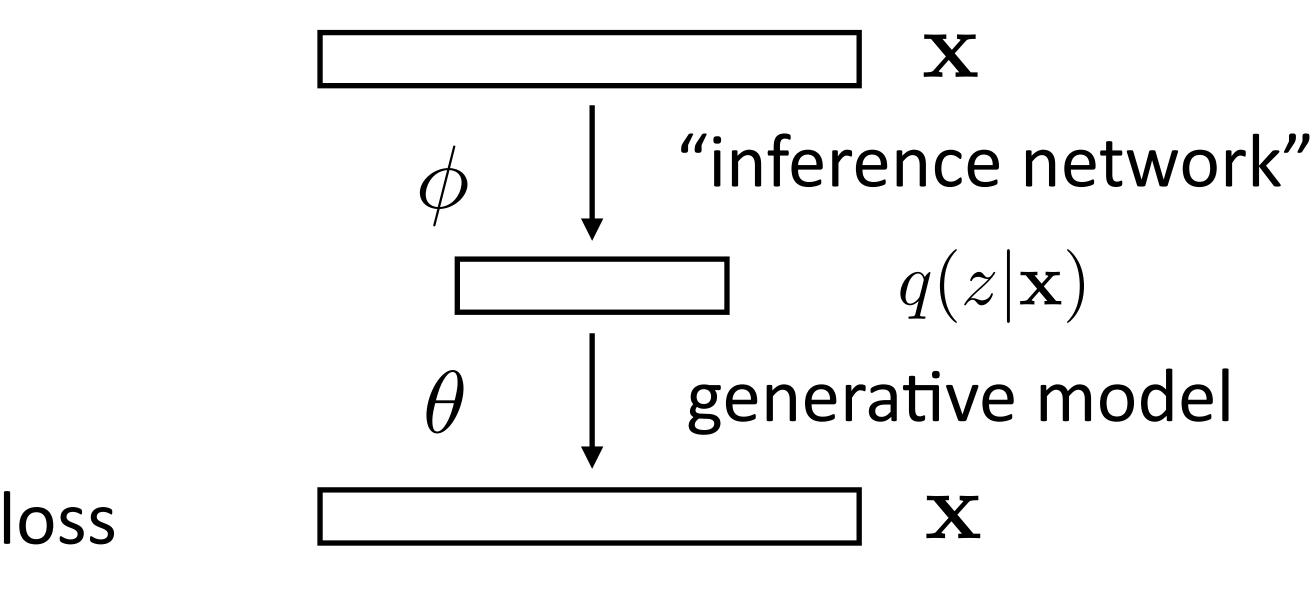
For each example **x**

- Compute q (run forward pass to compute mu and sigma)
- For some number of samples

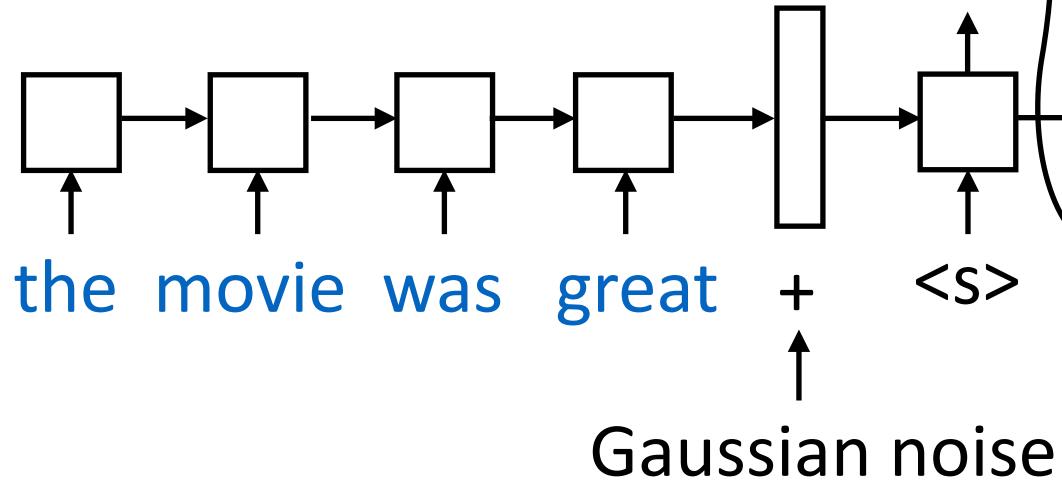
Sample $z \sim q$

- Compute P(x | z) and compute loss
- Backpropagate to update phi, theta

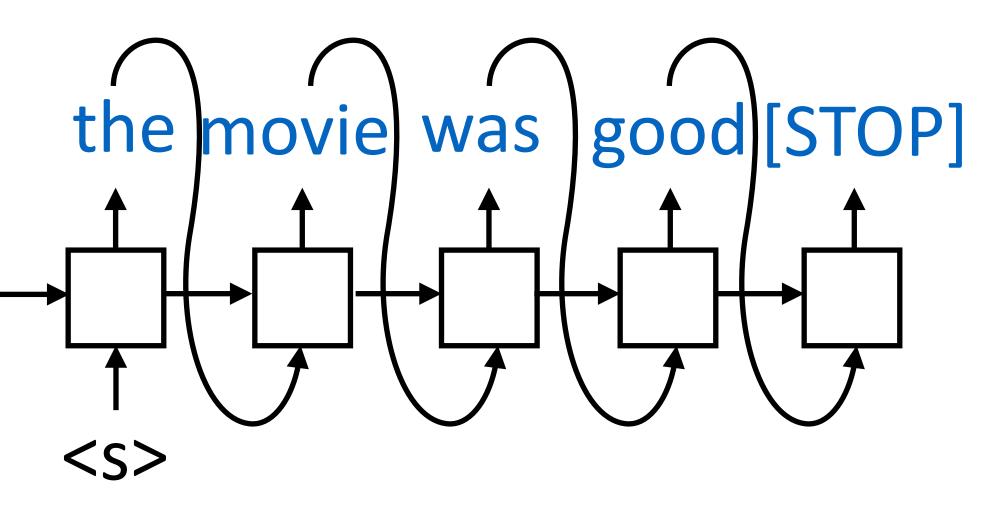
Autoencoder (training):



Autoencoders



- Another interpretation: train an autoencoder and add Gaussian noise
- Same computation graph as VAE, add KL divergence term to make the objective the same
- Inference network (q) is the encoder and generator is the decoder



$\mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] + \mathrm{KL}(q(z|\mathbf{x})||P(z))$

What does gradient encourage latent space to do?

Visualization

q

direction of better likelihood for **x**

Let us encode a sentence and generate similar sentences:

INPUT	we looked out at the setting sun .	i went to the kitchen .	how are you doing ?
MEAN	they were laughing at the same time .	$i \ went \ to \ the \ kitchen$.	what are you doing $?$
SAMP. 1	ill see you in the early morning .	$i \ went \ to \ my \ apartment$.	" are you sure ?
SAMP. 2	i looked up at the blue sky.	$i \ looked \ around \ the \ room$.	what are you doing ?
SAMP. 3	it was down on the dance floor .	$i \ turned \ back \ to \ the \ table$.	what are you doing $?$

- Style transfer: also condition on sentiment, change sentiment
- ...or use the latent representations for semisupervised learning

- Posit $\Rightarrow A$
- $\Rightarrow C$
- Positive

What do VAEs do?

tive	great indoor mall.
ARAE	no smoking mall.
Cross-AE	terrible outdoor urine.

 \Rightarrow ARAE \Rightarrow Cross-AE

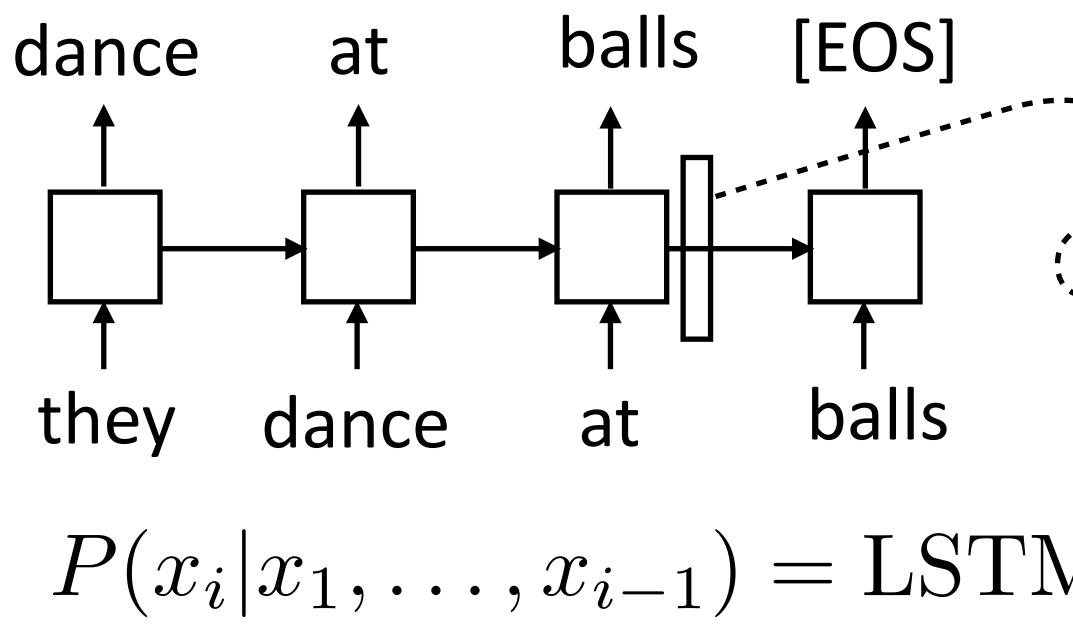
- it has a great atmosphere, with wonderful service.
- it has no taste, with a complete jerk.
- it has a great horrible food and run out service.

Bowman et al. (2016), Zhao et al. (2017)

Self-Supervision / Transfer Learning

- We want to use unlabeled data, but EM "requires" generative models. Are models like this really necessary?
- word2vec: predict nearby word given context. This wasn't generative, but the supervision is free...
- Language modeling is a "more contextualized" form of word2vec

Goals of Unsupervised Learning



- Generative model of the data!
- states as context-aware token representations

ELMO

learn a linear classifier on top of this vector to get a POS tagger with 97.3% accuracy (~SOTA)

$$\mathcal{M}(x_1,\ldots,x_{i-1})$$

Train one model in each direction on 1B words, use the LSTM hidden

to predict the original

- 80% of the time: MASK; 10%: random word; 10%: keep same
- I went to the *store* and bought *a* gallon of *milk*. My *favorite* kind is 2%. Transformer (12-24 layers)

I went to the MASK and bought MASK gallon of *dog*. I love karaoke!

Fext "infilling" task: replace 15% of tokens with something else and try

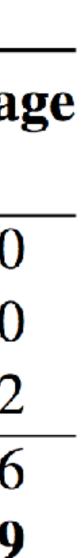
- I went to the MASK and bought MASK gallon of *dog*. My MASK kind is 2%.
 - Also generate "fake" sentence pairs and try to predict real from fake

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avera
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- Dramatic gains on a range of sentence pair / single sentence tasks:
- Not a generative model! But learns really effective representations.

Results

paraphrase identification, entailment, sentiment, textual similarity, ...



- Discrete linguistic structure with generative models: unsupervised POS induction
 - These models are hard to learn in an unsupervised way and too impoverished to really be all that useful
- Continuous structure with generative models: variational autoencoders
 - Useful, but also hard to learn in practice
- Continuous structure with "discriminative" models
 - ELMo / BERT seem extremely useful

Unsupervised Learning

EM sort of works for POS induction

- VAE can learn sentence representations
- Language modeling or text infilling as pretraining seems best arguably not "unsupervised" but the annotation is free
- Using unlabeled data effectively seems like one of the most important directions in NLP right now
- Next time: Jessy Li guest lecture on discourse