
CS388:	Natural	Language	Processing	
Lecture	23:	Unsupervised	Learning

Greg	Durrett

Some	slides	adapted	from	Leon	Gu	(CMU),	Taylor	Berg-Kirkpatrick	(CMU)



What	data	do	we	learn	from?

training	data labels

unlabeled	
data

‣ Supervised	seNngs:

‣ Tagging:	POS,	NER

‣ Parsing:	consRtuency,	
dependency,	semanRc	parsing

‣ IE,	MT,	QA,	…

‣ Semi-supervised	models

‣Word	embeddings	/	word	clusters	(helpful	for	nearly	all	tasks)

‣ Language	models	for	machine	translaRon

supervised	
model

semi-
supervised	
model

‣ Learn	linguisRc	structure	from	unlabeled	data	and	use	it?



This	Lecture

‣ ExpectaRon	maximizaRon	for	learning	HMMs

‣ Discrete	linguisRc	structure	from	generaRve	models:	unsupervised	POS	
inducRon

‣ ConRnuous	structure	with	generaRve	models:	variaRonal	autoencoders

‣ ConRnuous	structure	with	“discriminaRve”	models:	transfer	learning



EM	for	HMMs



Recall:	Hidden	Markov	Models

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

IniRal	
distribuRon

TransiRon	
probabiliRes

Emission	
probabiliRes

} }} ‣ P(x|y)	is	a	distribuRon	over	
all	words	in	the	vocabulary	
—	not	a	distribuRon	over	
features	(but	could	be!)

‣MulRnomials:	tag	x	tag	
transiRons,	tag	x	word	
emissions

‣ ObservaRon	(x)	depends	
only	on	current	state	(y)



Unsupervised	Learning

a		b		a		c		c		c		c

‣ Can	we	induce	linguisRc	structure?	Thought	experiment…

‣What’s	a	two-state	HMM	that	could	produce	this?

b		a		c		c		c

a		a		b		c		c		a		a

‣What	if	I	show	you	this	sequence?

‣What	did	you	do?	Use	current	model	parameters	+	data	to	refine	
your	model.	This	is	what	EM	will	do



Part-of-Speech	InducRon
‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

‣ Assume	we	don’t	have	access	to	labeled	examples	—	how	can	we	learn	
a	POS	tagger?

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ Key	idea:	opRmize	

‣ OpRmizing	marginal	log-likelihood	with	no	labels	y:

GeneraRve	model	explains	
the	data	x;	the	right	HMM	
makes	it	look	likely

P (x) =
X

y

P (y,x)

‣ non-convex	opRmizaRon	
problem



Part-of-Speech	InducRon
‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ OpRmizing	marginal	log-likelihood	with	no	labels	y:

‣ Can’t	use	a	discriminaRve	model;																														,	doesn’t	model	x

‣What’s	the	point	of	this?	Model	has	inducRve	bias	and	so	should	learn	
some	useful	latent	structure	y	(clustering	effect)

‣ EM	is	just	one	procedure	for	opRmizing	this	kind	of	objecRve

X

y

P (y|x) = 1



ExpectaRon	MaximizaRon

log

X

y

P (x,y|✓) ✓

= log

X

y

q(y)
P (x,y|✓)

q(y)
‣ VariaRonal	approximaRon	q	—	this	
is	a	trick	we’ll	return	to	later!

�
X

y

q(y) log
P (x,y|✓)

q(y)
‣ Jensen’s	inequality	(uses	concavity	
of	log)

= Eq(y) logP (x,y|✓) + Entropy[q(y)]

‣ Can	opRmize	this	lower-bound	on	log	likelihood	instead	of	log-likelihood

‣ CondiRon	on	parameters

Adapted	from	Leon	Gu



ExpectaRon	MaximizaRon

log

X

y

P (x,y|✓) � Eq(y) logP (x,y|✓) + Entropy[q(y)]

‣ If q(y) = P (y|x, ✓),	this	bound	ends	up	being	Rght

‣ ExpectaRon-maximizaRon:	alternaRng	maximizaRon	of	the	
lower	bound	over	q	and

‣ E-step:	maximize	w.r.t.	q;	that	is,	qt = P (y|x, ✓t�1)

‣M-step:	maximize	w.r.t.			;	that	is,	✓ ✓t = argmax✓Eqt logP (x,y|✓)

Adapted	from	Leon	Gu

✓
‣ Current	Rmestep	=	t,	have	parameters	✓t�1



EM	for	HMMs
‣ ExpectaRon-maximizaRon:	alternaRng	maximizaRon
‣ E-step:	maximize	w.r.t.	q;	that	is,	qt = P (y|x, ✓t�1)

‣M-step:	maximize	w.r.t.			;	that	is,	✓ ✓t = argmax✓Eqt logP (x,y|✓)

‣ E-step:	for	an	HMM:	run	forward-backward	with	the	given	parameters

‣M-step:	set	parameters	to	opRmize	the	crazy	argmax	term

P (yi = s|x, ✓t�1), P (yi = s1, yi+1 = s2|x, ✓t�1)

tag	marginals	at	
each	posiRon

tag	pair	marginals	at	
each	posiRon

‣ Compute



M-Step
‣ Recall	how	we	maximized	log	P(x,y):	read	counts	off	data

the
DT

dog
NN

count(DT,	the)	=	1	
count(DT,	dog)	=	0	
count(NN,	the)	=	0	
count(NN,	dog)	=	1

P(the|DT)	=	1	
P(dog|DT)	=	0	
P(the|NN)	=	0	
P(dog|NN)	=	1

‣ Same	procedure,	but	maximizing	P(x,y)	in	expectaRon	under	q	
means	that	q	specifies	frac/onal	counts

the dog

count(DT,	the)	=	0.9	
count(DT,	dog)	=	0.3	
count(NN,	the)	=	0.1	
count(NN,	dog)	=	0.7

P(the|DT)	=	0.75	
P(dog|DT)	=	0.25	
P(the|NN)	=	0.125	
P(dog|NN)	=	0.875

q DT:	0.9
NN:	0.1 NN:	0.7

DT:	0.3



M-Step
‣ Same	for	transiRon	probabiliRes

the dog

q

DT—NN:	0.6
DT—DT:	0.1
NN—DT:	0.2
NN—NN:	0.1

P(DT|DT)	=	1/7	
P(NN|DT)	=	6/7	
P(DT|NN)	=	2/3	
P(NN|NN)	=	1/3



How	does	EM	learn	things?
‣ IniRalize	(M-step	0):

P(the|DT)	=	0.9	
P(dog|DT)	=	0.05	
P(marsupial|DT)	=	0.05

P(the|NN)	=	0.05	
P(dog|NN)	=	0.9	
P(marsupial|NN)	=	0.05

‣ TransiRon	probabiliRes:	uniform

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.5

DT:	0.5
‣ E-step	1:	(all	values	are	approximate)

‣ Emissions

‣ uniform



How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.5

DT:	0.5
‣ E-step	1:

‣M-step	1:

‣ TransiRon	probabiliRes	(approx):	P(NN|DT)	=	3/4,	P(DT|DT)	=	1/4
‣ Emissions	aren’t	so	different



How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.70

DT:	0.30
‣ E-step	2:

‣M-step	1:

‣ Emissions	aren’t	so	different

‣ TransiRon	probabiliRes	(approx):	P(NN|DT)	=	3/4,	P(DT|DT)	=	1/4



How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.70

DT:	0.30
‣ E-step	2:

‣M-step	2:

‣ Emission	P(marsupial|NN)	>	P(marsupial|DT)

‣ Remember	to	tag	marsupial	as	NN	in	the	future!

‣ Context	constrained	what	we	learned!	That’s	how	data	helped	us



How	does	EM	learn	things?
‣ Can	think	of	q	as	a	kind	of	“fracRonal	annotaRon”

‣ E-step:	compute	annotaRons	(posterior	under	current	model)

‣M-step:	supervised	learning	with	those	fracRonal	annotaRons

‣ IniRalize	with	some	reasonable	weights,	alternate	E	and	M	unRl	
convergence



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ E-step:	compute	q	which	
gives	this	lower	bound‣ iniRal	theta



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

‣M-step:	find	
maximum	of	
lower	bound

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ E-step	2:	re-esRmate	q



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ E-step	2:	re-esRmate	q



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)



EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)



Part-of-speech	InducRon

‣Merialdo	(1994):	you	have	a	whitelist	of	tags	for	each	word

‣ Learn	parameters	on	k	examples	to	start,	use	those	to	iniRalize	
EM,	run	on	1	million	words	of	unlabeled	data

‣ Tag	dicRonary	+	data	should	get	us	started	in	the	right	
direcRon…



Part-of-speech	InducRon
‣ Small	amounts	
of	data	>	large	
amounts	of	
unlabeled	data
‣ Running	EM	*hurts*	
performance	once	
you	have	labeled	
data

Merialdo	(1994)



Two	Hours	of	AnnotaRon

Garrete	and	Baldridge	(2013)

‣ Kinyarwanda	and	Malagasy	(two	actual	low-resource	languages)

‣ Label	propagaRon	(technique	for	using	dicRonary	labels)	helps	a	lot,	
with	data	that	was	collected	in	two	hours



VariaRonal	Autoencoders



ConRnuous	Latent	Variables

‣What	if	we	want	to	use	conRnuous	latent	variables?

‣ For	discrete	latent	variables	y,	we	opRmized: P (x) =
X

y

P (y,x)

P (z,x) = P (z)P (x|z)

P (x) =

Z
P (z)P (x|z)@z

‣ Can	use	EM	here	when	P(z)	and	P(x|z)	are	Gaussians

‣What	if	we	want	P(x|z)	to	be	something	more	complicated,	like	an	
LSTM	with	z	as	the	iniRal	state?



Deep	GeneraRve	Models

the					

<s>

movie was good [STOP]

z

‣ z	is	a	latent	variable	which	should	control	the	generaRon	of	the	
sentence,	maybe	capture	something	about	its	topic

P (z,x) = P (z)P (x|z)



Deep	GeneraRve	Models

Jensen

= Eq(z|x)[� log q(z|x) + logP (x, z|✓)]
= Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))

log

Z

z
P (x, z|✓) = log

Z

z
q(z)

P (x, z|✓
q(z)

�
Z

z
q(z) log

P (x, z|✓)
q(z)

‣ KL	divergence:	distance	metric	over	distribuRons	(more	dissimilar	<=>	
higher	KL)

“make	the	data	likely	under	q”  
(discriminaRve)

“make	q	close	to	the	prior”



VariaRonal	Autoencoders

x

Input

q(z|x)

x

distribuRon	over	z

Maximize	P(x|z,θ)

“inference	network”

generaRve	model
x

GeneraRve	model	(test): Autoencoder	(training):

Miao	et	al.	(2015)

Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))

z ⇠ P (z)



Training	VAEs

x

q(z|x)

x

“inference	network”

generaRve	model

Autoencoder	(training):‣ Choose	q	to	be	Gaussian	with	
parameters	that	are	computed	from	x

Miao	et	al.	(2015)

q = N(µ(x), diag(�2(x)))

‣ mu	and	sigma	are	computed	from	an	
LSTM	over	x,	call	their	parameters	

�

✓

‣ How	to	handle	the	expectaRon?	
Sampling

�

Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))



Training	VAEs

x

q(z|x)

x

“inference	network”

generaRve	model

Autoencoder	(training):For	each	example	x

Compute	q	(run	forward	pass	to	
compute	mu	and	sigma)

Sample	z	~	q

For	some	number	of	samples

Compute	P(x|z)	and	compute	loss

Backpropagate	to	update	phi,	theta

�

✓



Autoencoders

the		movie		was			great

the					

<s>

movie was good [STOP]

‣ Inference	network	(q)	is	the	encoder	and	generator	is	the	decoder

+

Gaussian	noise	

‣ Same	computaRon	graph	as	VAE,	add	KL	divergence	term	to	make	the	
objecRve	the	same

‣ Another	interpretaRon:	train	an	autoencoder	and	add	Gaussian	noise



VisualizaRon

‣What	does	gradient	encourage	latent	space	to	do?

direcRon	of	beter	likelihood	for	xprior

q

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))



What	do	VAEs	do?
‣ Let	us	encode	a	sentence	and	generate	similar	sentences:

‣ Style	transfer:	also	
condiRon	on	senRment,	
change	senRment

Bowman	et	al.	(2016),	Zhao	et	al.	(2017)

‣ …or	use	the	latent	
representaRons	for	semi-	
supervised	learning



Self-Supervision	/	Transfer	Learning



Goals	of	Unsupervised	Learning

‣We	want	to	use	unlabeled	data,	but	EM	“requires”	generaRve	models.	
Are	models	like	this	really	necessary?

‣ Language	modeling	is	a	“more	contextualized”	form	of	word2vec

‣ word2vec:	predict	nearby	word	given	context.	This	wasn’t	generaRve,	
but	the	supervision	is	free…



ELMo

they dance at balls

dance at balls [EOS]

P (xi|x1, . . . , xi�1) = LSTM(x1, . . . , xi�1)

‣ GeneraRve	model	of	the	data!

‣ Train	one	model	in	each	direcRon	on	1B	words,	use	the	LSTM	hidden	
states	as	context-aware	token	representaRons

learn	a	linear	classifier	on	top	of	
this	vector	to	get	a	POS	tagger	
with	97.3%	accuracy	(~SOTA)



BERT
‣ Text	“infilling”	task:	replace	15%	of	tokens	with	something	else	and	try	
to	predict	the	original

I	went	to	the	MASK	and	bought	MASK	gallon	of	dog	.	My	MASK	kind	is	2%	.

I	went	to	the	store	and	bought	a	gallon	of	milk	.	My	favorite	kind	is	2%	.

Transformer	(12-24	layers)

‣ 80%	of	the	Rme:	MASK;	10%:	random	word;	10%:	keep	same

‣ Also	generate	“fake”	sentence	pairs	and	try	to	predict	real	from	fake

I	went	to	the	MASK	and	bought	MASK	gallon	of	dog	.	I	love	karaoke!



Results

‣ DramaRc	gains	on	a	range	of	sentence	pair	/	single	sentence	tasks:	
paraphrase	idenRficaRon,	entailment,	senRment,	textual	similarity,	…

‣ Not	a	generaRve	model!	But	learns	really	effecRve	representaRons…



Unsupervised	Learning

‣ These	models	are	hard	to	learn	in	an	unsupervised	way	and	too	
impoverished	to	really	be	all	that	useful

‣ Discrete	linguisRc	structure	with	generaRve	models:	unsupervised	POS	
inducRon

‣ ConRnuous	structure	with	generaRve	models:	variaRonal	autoencoders

‣ ConRnuous	structure	with	“discriminaRve”	models

‣ Useful,	but	also	hard	to	learn	in	pracRce

‣ ELMo	/	BERT	seem	extremely	useful



Takeaways

‣ EM	sort	of	works	for	POS	inducRon

‣ Language	modeling	or	text	infilling	as	pretraining	seems	best	—	
arguably	not	“unsupervised”	but	the	annotaRon	is	free

‣ VAE	can	learn	sentence	representaRons

‣ Next	Rme:	Jessy	Li	guest	lecture	on	discourse

‣ Using	unlabeled	data	effecRvely	seems	like	one	of	the	most	
important	direcRons	in	NLP	right	now


