CS388: Natural Language Processing Lecture 6: Neural Networks

Greg Durrett

Administrivia

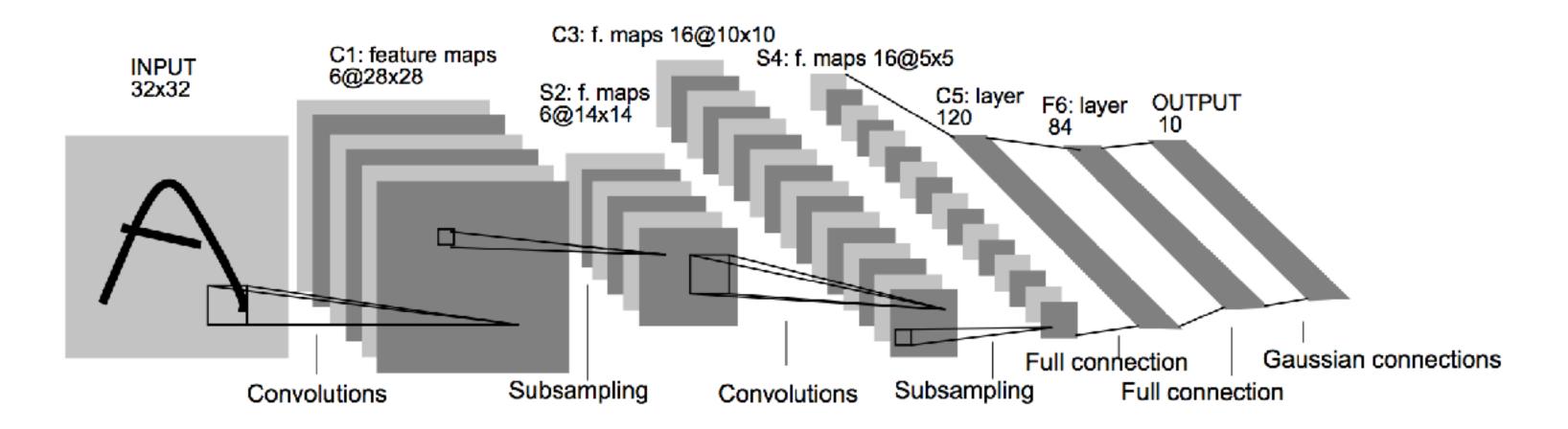
- Mini 1 graded, posted on Canvas
 - Xi Ye (88.0 F1), Quang Duong (87.3 F1), Uday Kusupati (87.2 F1)
 6 students in the 86 range, rest are 85 or below
 - ▶ Test F1s << dev F1
 - Changing thresholds / imbalanced classification
 - POS/chunk features
 - ▶ Someone got 86.3 with only 7 features total, classifier is a dictionary
- Project 1 due in 9 days
 - Small bug fixed in BadNerModel (no impact on the code you write)

This Lecture

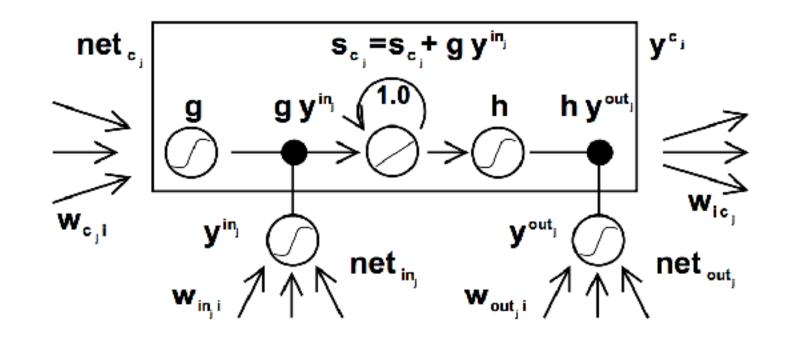
- Beam search: in a few lectures
- Neural network history
- Neural network basics
- Feedforward neural networks + backpropagation
- Applications
- Implementing neural networks (if time)

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998



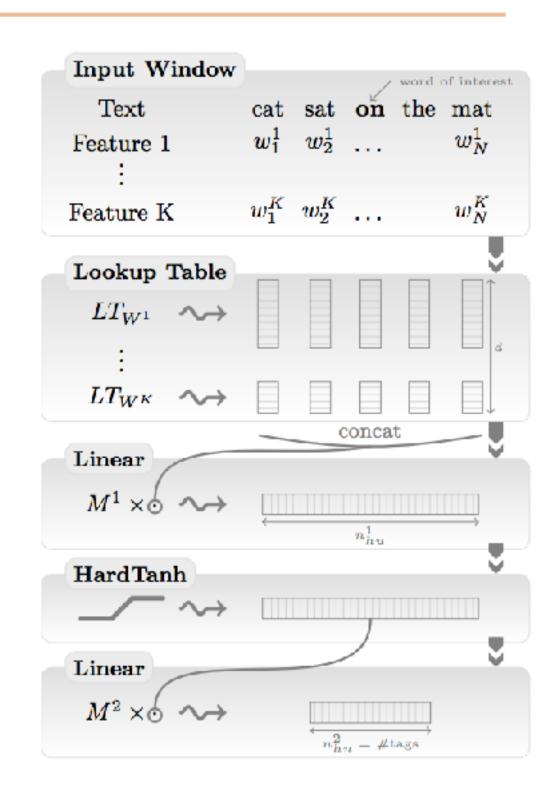
LSTMs: Hochreiter and Schmidhuber (1997)

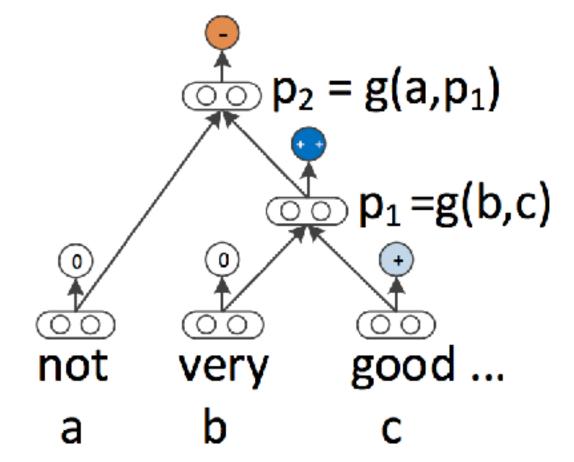


Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
 - Feedforward neural nets induce features for sequential CRFs ("neural CRF")
 - ▶ 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al. (2012): AlexNet for vision
- Socher 2011-2014: tree-structured RNNs working okay





2014: Stuff starts working

- ► Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets work for NLP?)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work for NLP?)
- Chen and Manning transition-based dependency parser (even feedforward networks work well for NLP?)
- ▶ 2015: explosion of neural nets for everything under the sun

Why didn't they work before?

- ▶ Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- ▶ Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - Regularization: dropout is pretty helpful
 - ▶ Computers not big enough: can't run for enough iterations
- ▶ Inputs: need word representations to have the right continuous semantics

Neural Net Basics

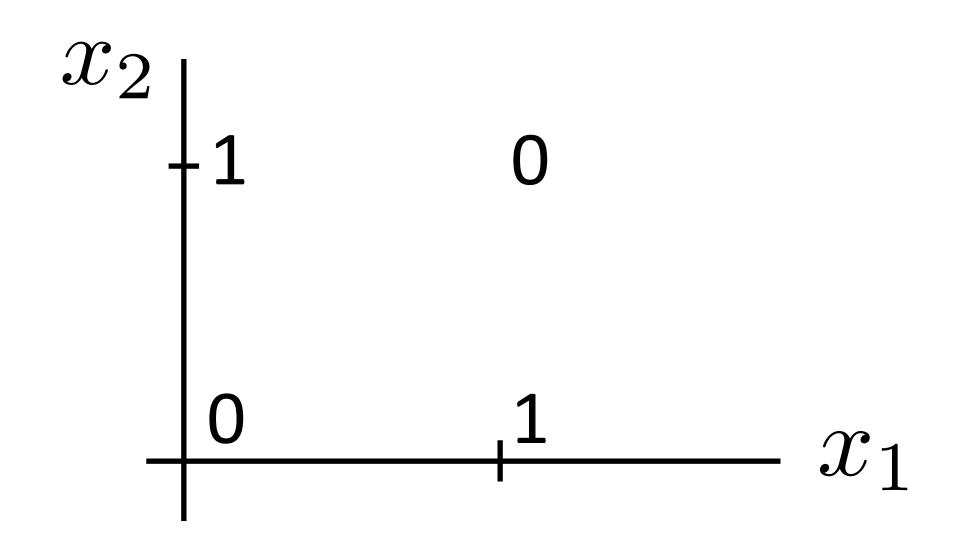
Neural Networks

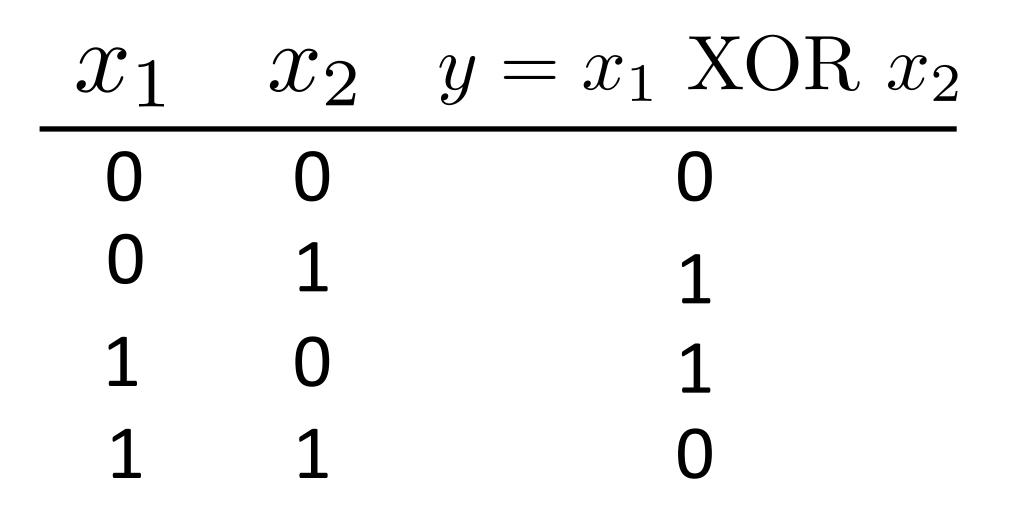
- Linear classification: $\operatorname{argmax}_y w^\top f(x,y)$
- ▶ How can we do nonlinear classification? Kernels are too slow...
- Want to learn intermediate conjunctive features of the input

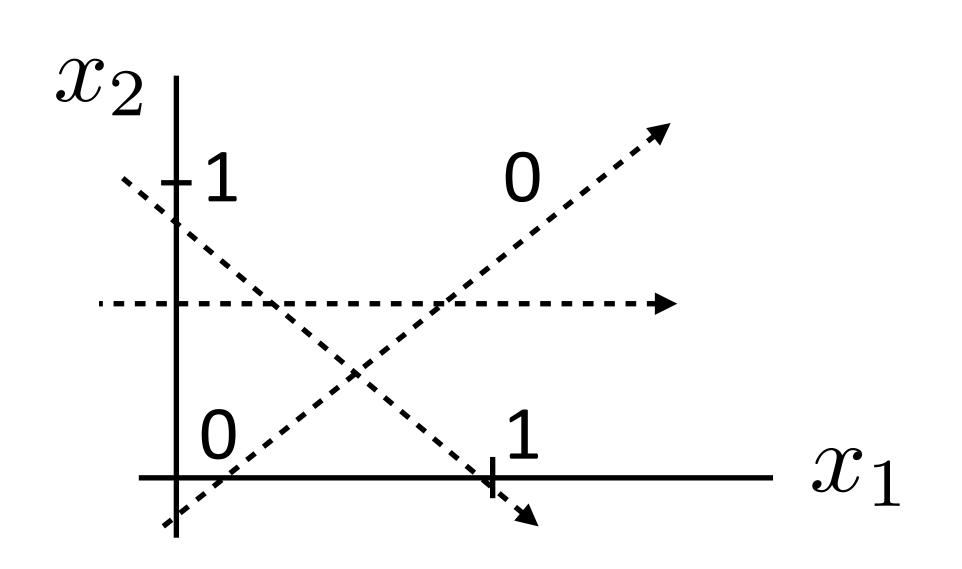
the movie was not all that good

I[contains not & contains good]

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 $(\text{generally } \mathbf{x} = (x_1, \dots, x_m))$
- Output y(generally $\mathbf{y} = (y_1, \dots, y_n)$)



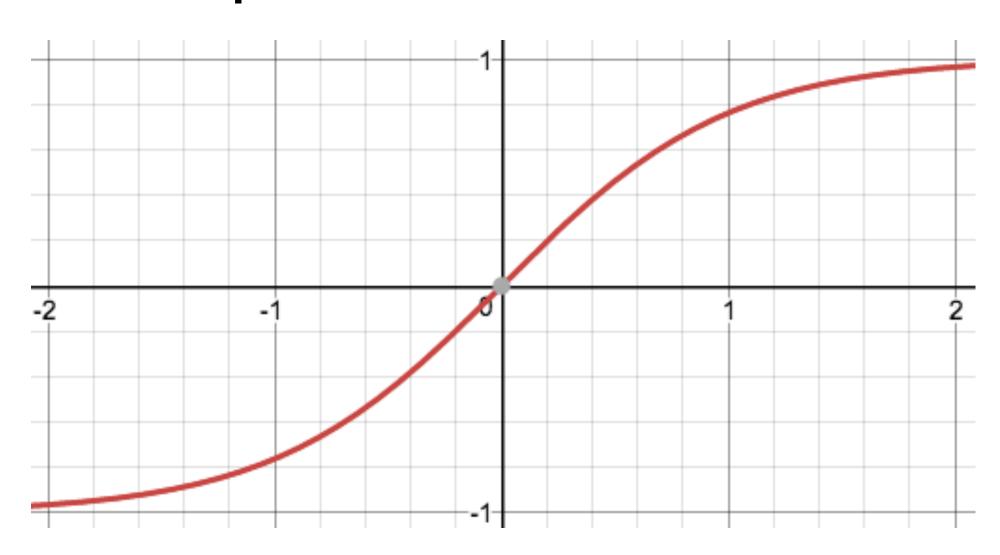


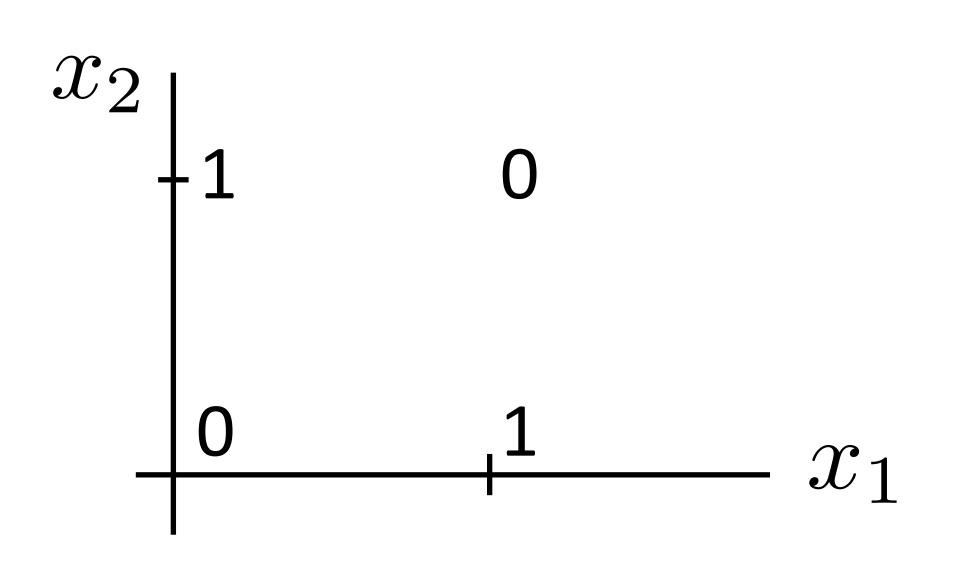


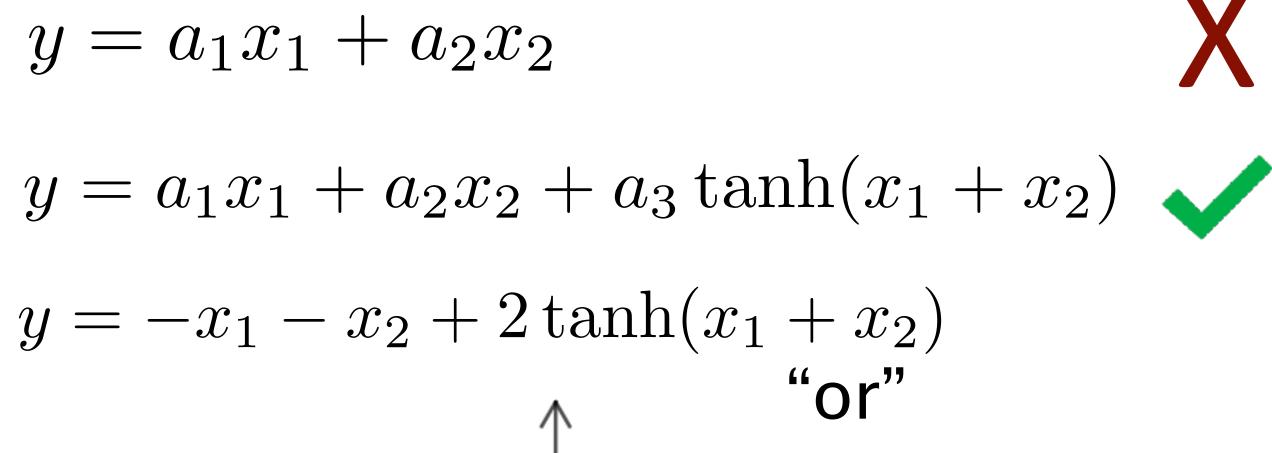
x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

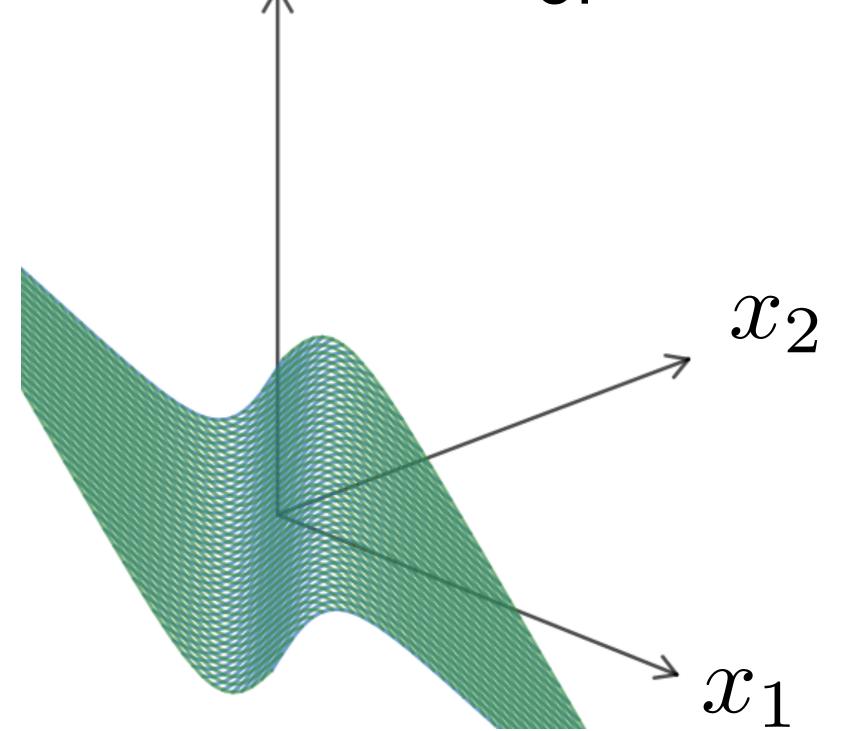
$$y = a_1x_1 + a_2x_2$$
 X $y = a_1x_1 + a_2x_2 + a_3 \tanh(x_1 + x_2)$ "or"

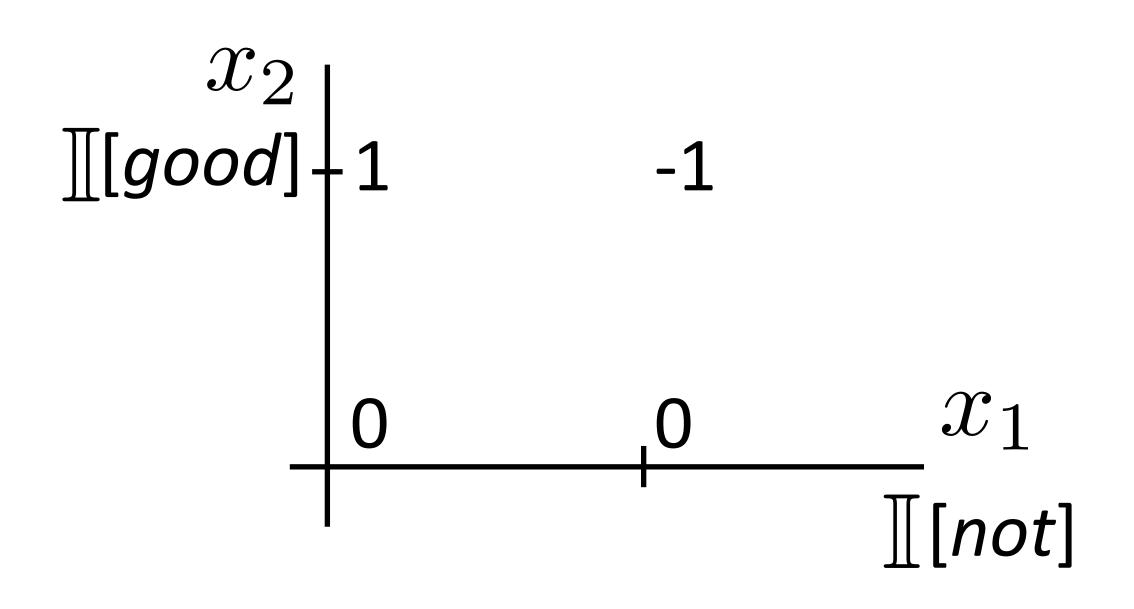
(looks like action potential in neuron)



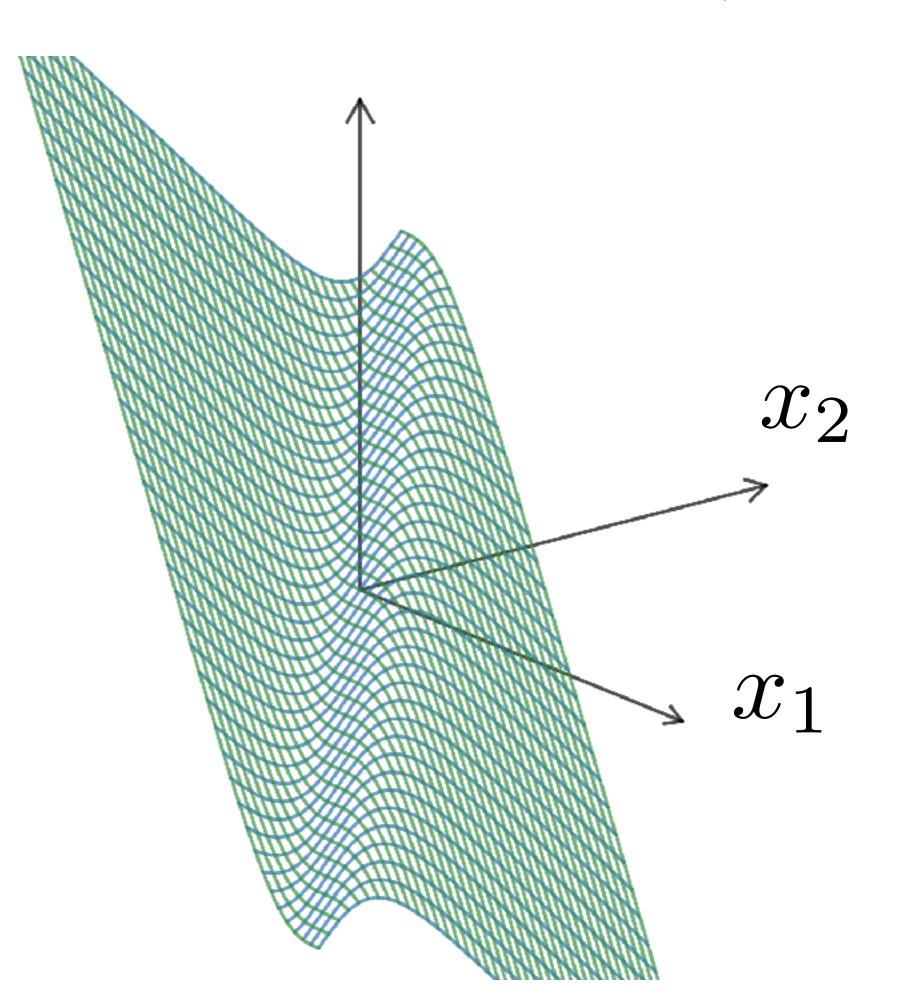








$$y = -2x_1 - x_2 + 2\tanh(x_1 + x_2)$$



the movie was not all that good

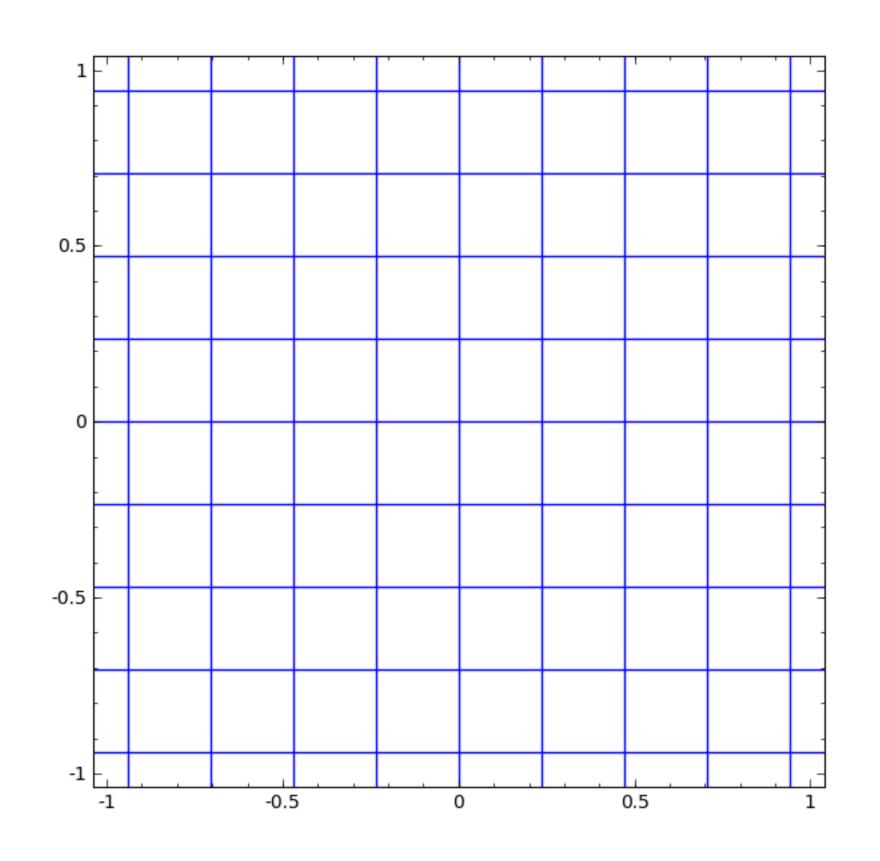
Neural Networks

Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$

$$y = g(\mathbf{w} \cdot \mathbf{x} + b)$$

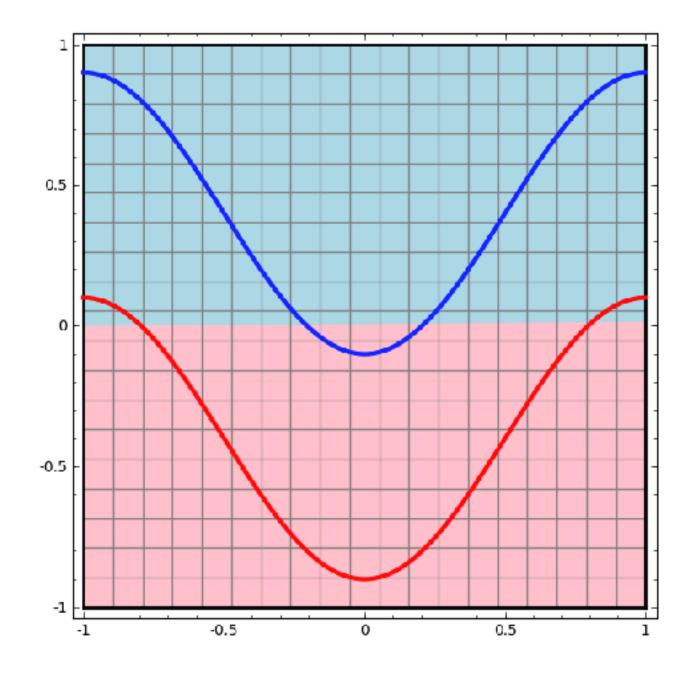
$$\mathbf{y} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Nonlinear Warp Shift transformation space

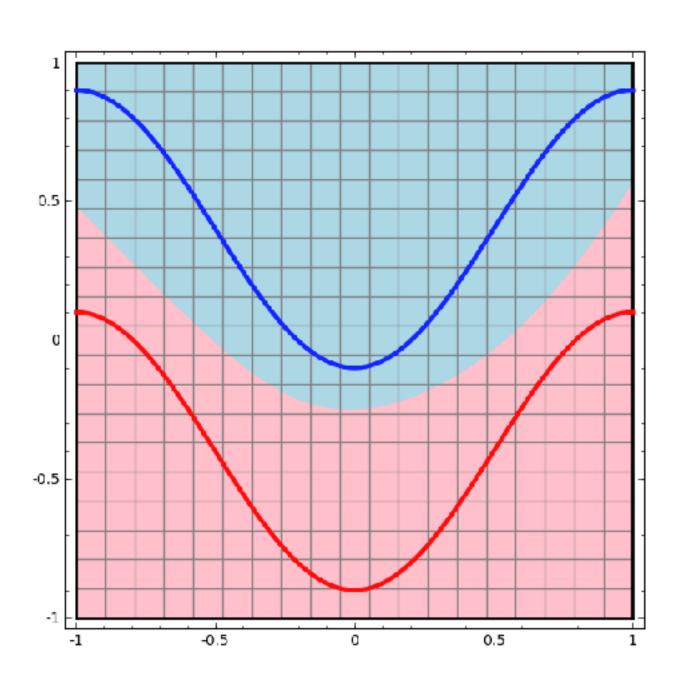


Neural Networks

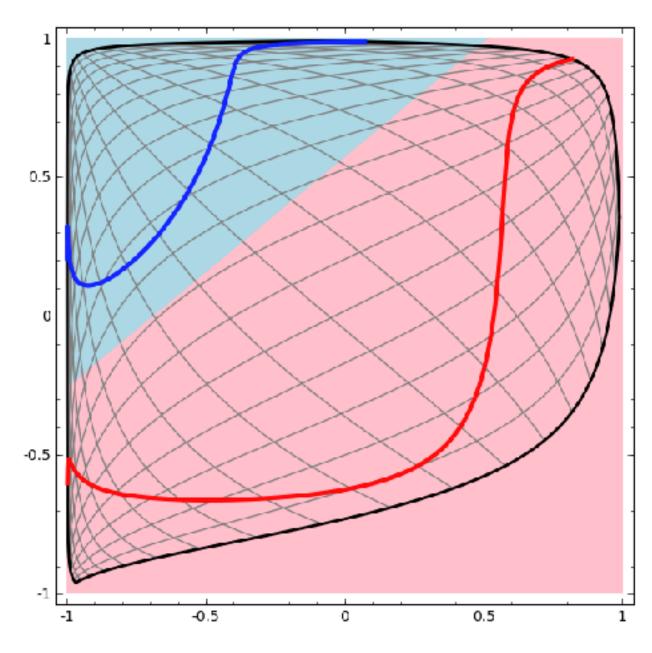
Linear classifier



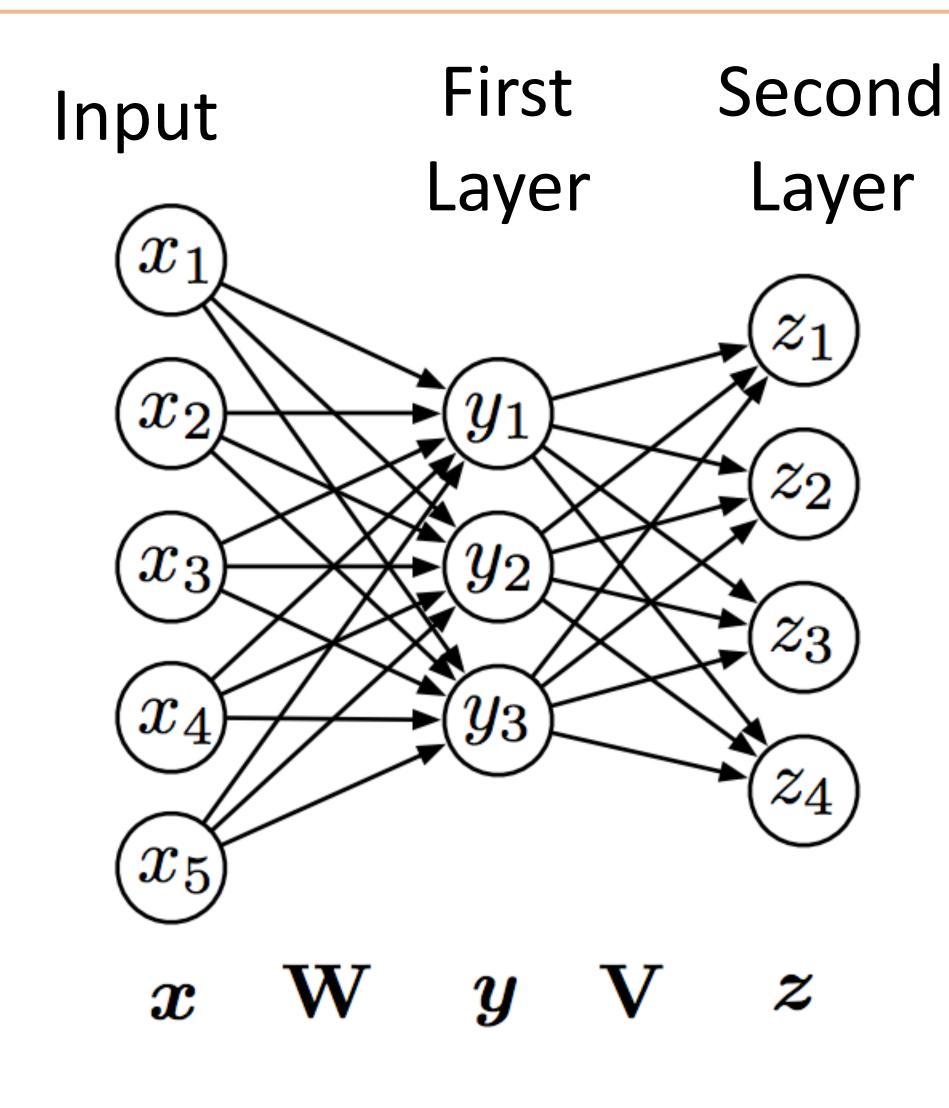
Neural network



...possible because we transformed the space!



Deep Neural Networks



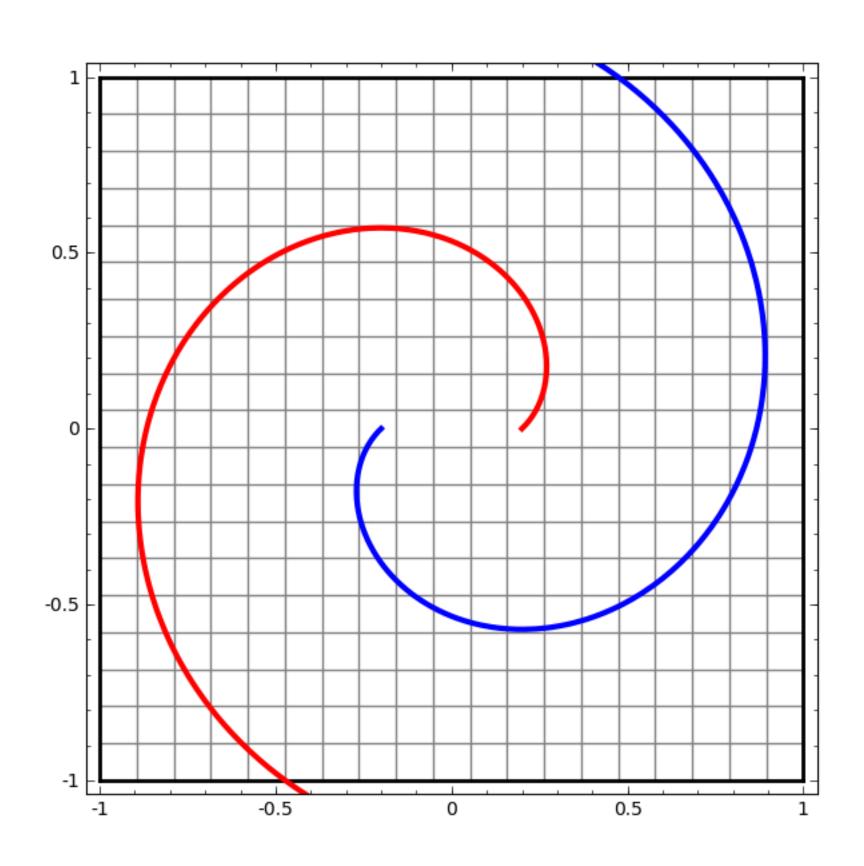
$$egin{aligned} oldsymbol{y} &= g(\mathbf{W}oldsymbol{x} + oldsymbol{b}) \ \mathbf{z} &= g(\mathbf{V}oldsymbol{y}(\mathbf{W}\mathbf{x} + \mathbf{b}) + \mathbf{c}) \ \end{aligned}$$
 output of first layer

"Feedforward" computation (not recurrent)

Check: what happens if no nonlinearity? More powerful than basic linear models?

$$z = V(Wx + b) + c$$

Deep Neural Networks



Feedforward Networks, Backpropagation

Logistic Regression with NNs

$$P(y|\mathbf{x}) = \frac{\exp(w^{\top} f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top} f(\mathbf{x}, y'))}$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w^{\top} f(\mathbf{x}, y)]_{y \in \mathcal{Y}}\right)$$

$$\operatorname{softmax}(p)_i = \frac{\exp(p_i)}{\sum_{i'} \exp(p_{i'})}$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

- Single scalar probability
- Compute scores for all possible labels at once (returns vector)
- softmax: exps and normalizes a given vector
- Weight vector per class;W is [num classes x num feats]
- Now one hidden layer

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$d \text{ hidden units}$$

$$v \text{ probs}$$

$$d \times n \text{ matrix}$$

$$nonlinearity$$

$$num_classes \times d$$

$$n \text{ features}$$

$$num_classes \times d$$

$$n \text{ matrix}$$

Training Neural Networks

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$$
 $\mathbf{z} = g(Vf(\mathbf{x}))$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) = \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$$

- i^* : index of the gold label
- \triangleright e_i : 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

Computing Gradients

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

▶ Gradient with respect to *W*

$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \mathbf{z}_j & \text{if } i = i^* \\ -P(y = i | \mathbf{x}) \mathbf{z}_j & \text{otherwise} \end{cases}$$

V

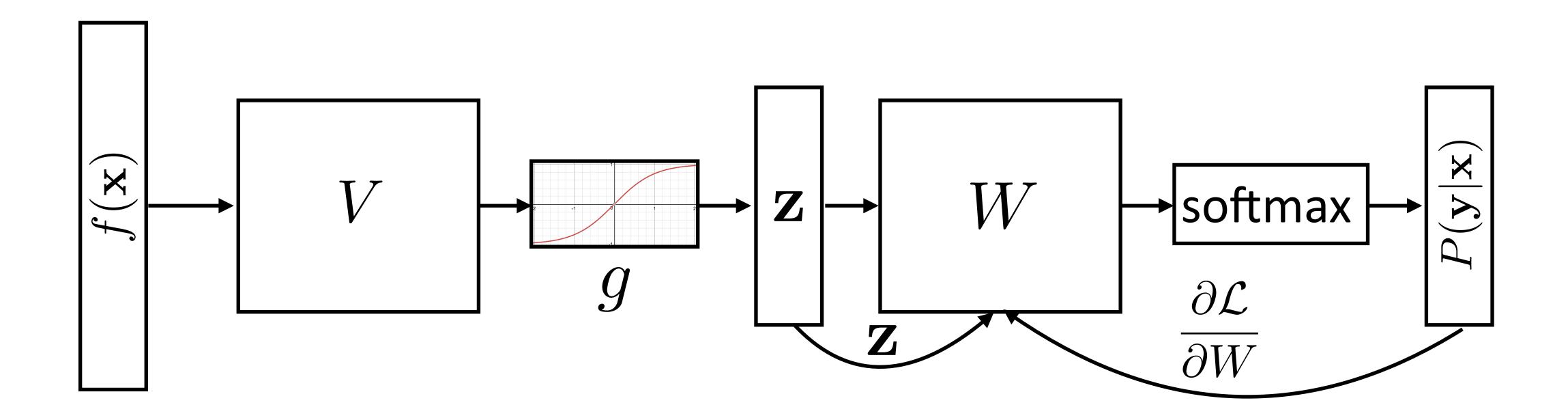
 $\mathbf{z}_j - P(y = i|\mathbf{x})\mathbf{z}_j$

 $-P(y=i|\mathbf{x})\mathbf{z}_j$

Looks like logistic regression with z as the features!

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



Computing Gradients: Backpropagation

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

 $\mathbf{z} = g(Vf(\mathbf{x}))$

Activations at hidden layer

Gradient with respect to V: apply the chain rule

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial V_{ij}} = \frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial V_{ij}}$$
[some math...]

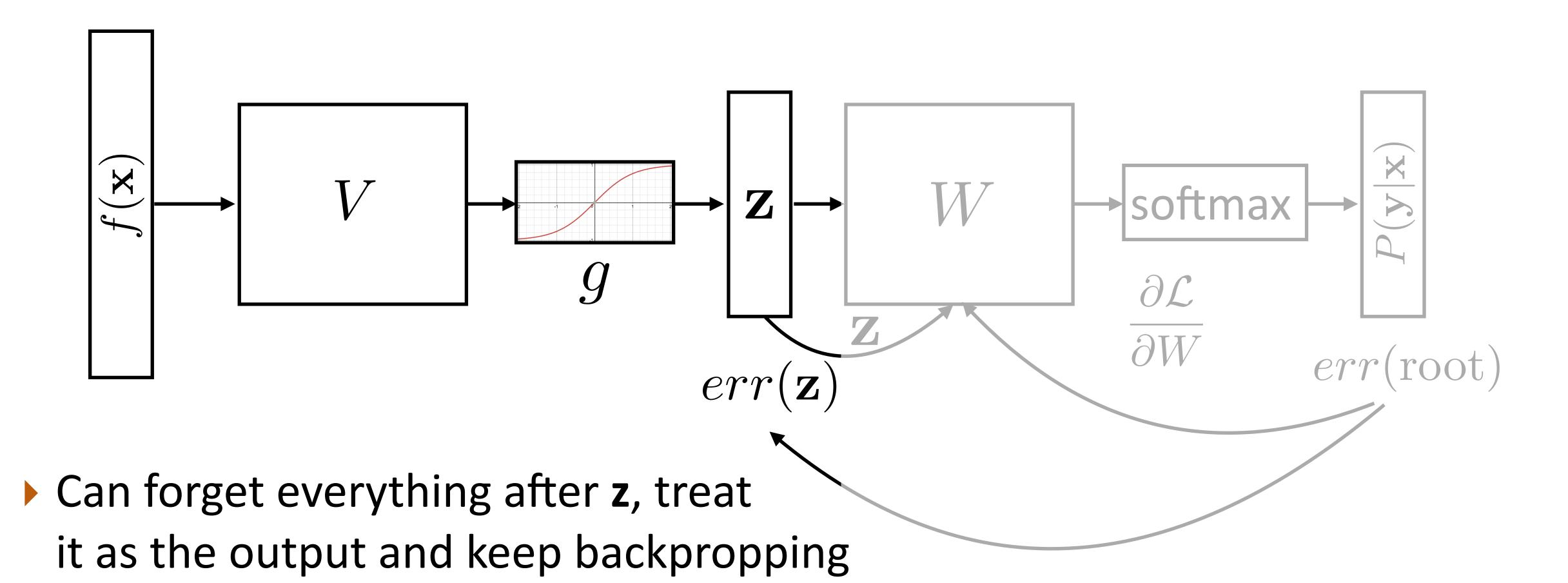
$$err(\text{root}) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$$

dim = m

$$err(\text{root}) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$$
 $\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top}err(\text{root})$ dim = d

Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



Backpropagation: Takeaways

- Gradients of output weights W are easy to compute looks like logistic regression with hidden layer z as feature vector
- ▶ Can compute derivative of loss with respect to **z** to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation
- Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

Part-of-speech tagging with FFNNs

55

Fed raises interest rates in order to ...

previous word

- Word embeddings for each word form input
- ▶ ~1000 features here smaller feature vector than in sparse models, but every feature fires on every example
- Weight matrix learns position-dependent processing of the words

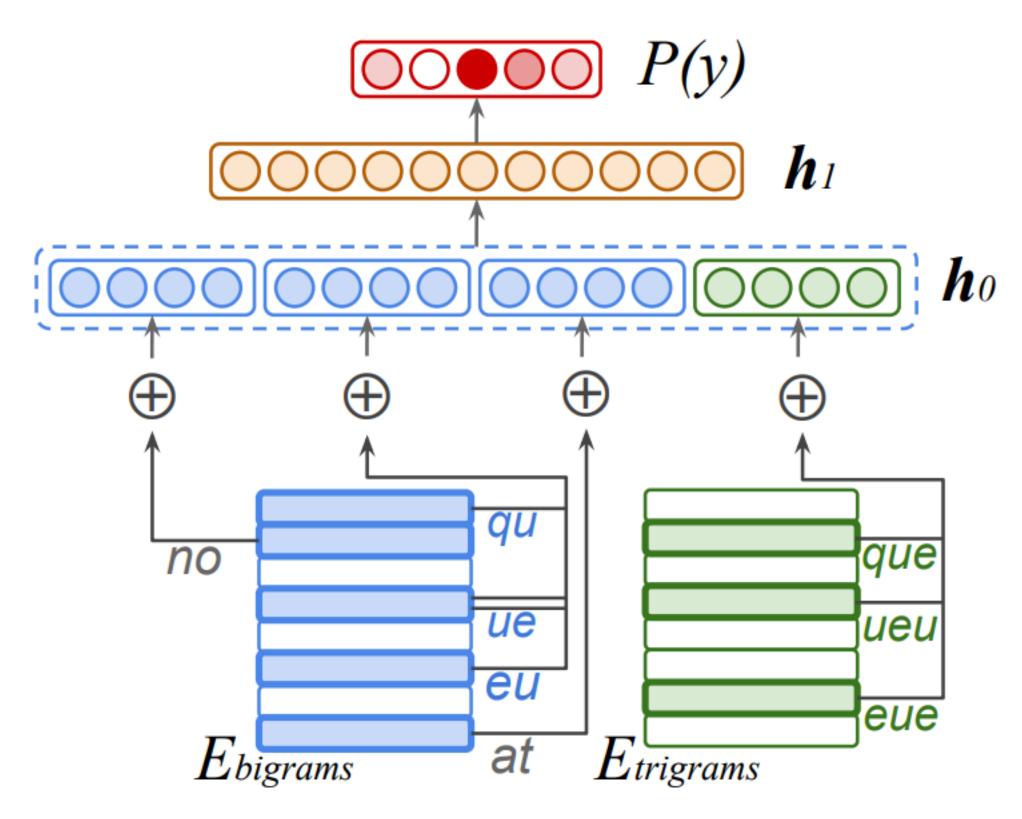
curr word

next word

other words, feats, etc. L...

Botha et al. (2017)

NLP with Feedforward Networks



There was no queue at the ...

 Hidden layer mixes these different signals and learns feature conjunctions

NLP with Feedforward Networks

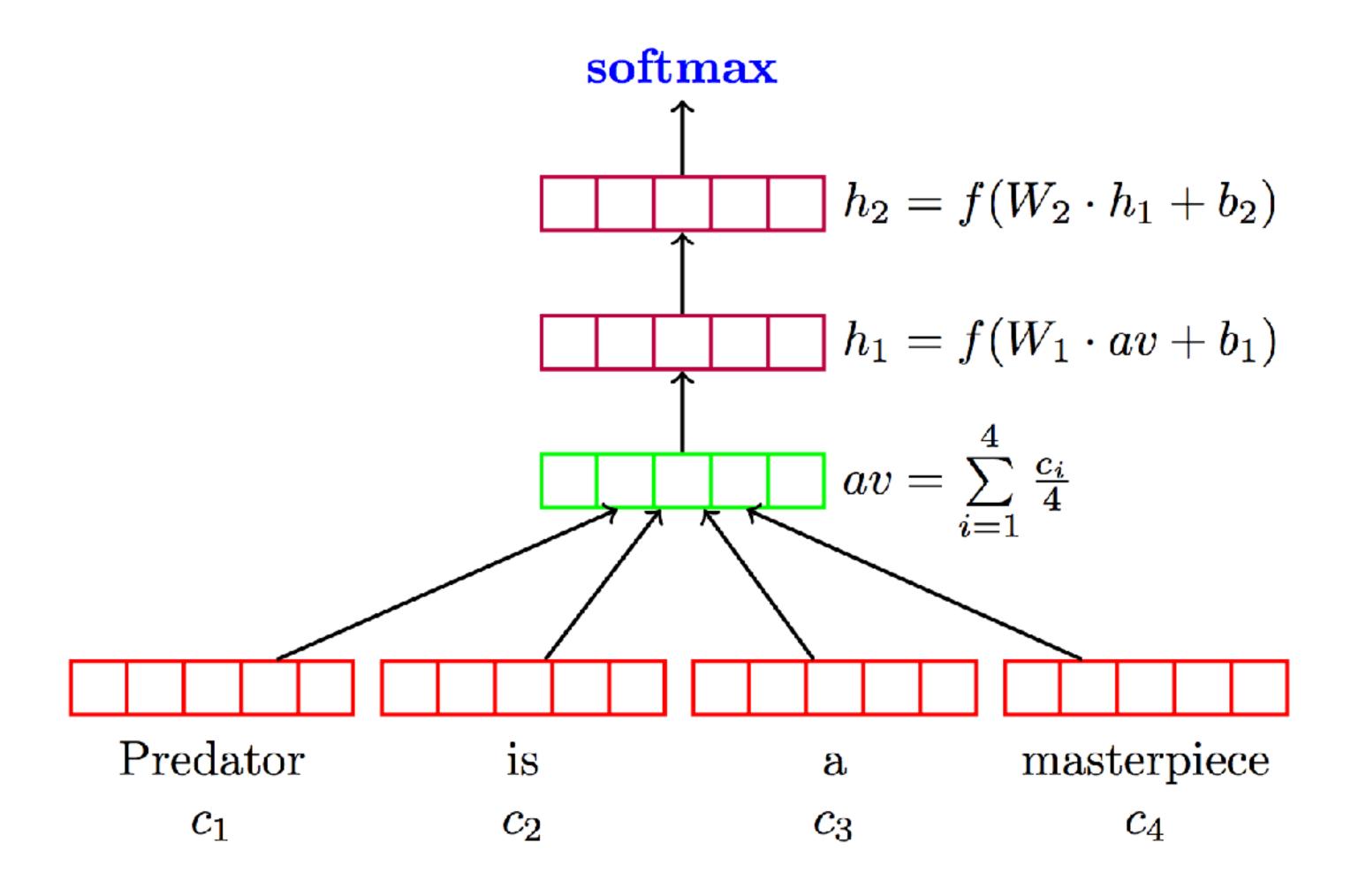
Multilingual tagging results:

Model	Acc.	Wts.	MB	Ops.
Gillick et al. (2016)	95.06	900k	_	6.63m
Small FF	94.76	241k	0.6	0.27m
+Clusters	95.56	261k	1.0	0.31m
$\frac{1}{2}$ Dim.	95.39	143k	0.7	0.27m 0.31m 0.18m

Gillick used LSTMs; this is smaller, faster, and better

Sentiment Analysis

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input



lyyer et al. (2015)

Sentiment Analysis

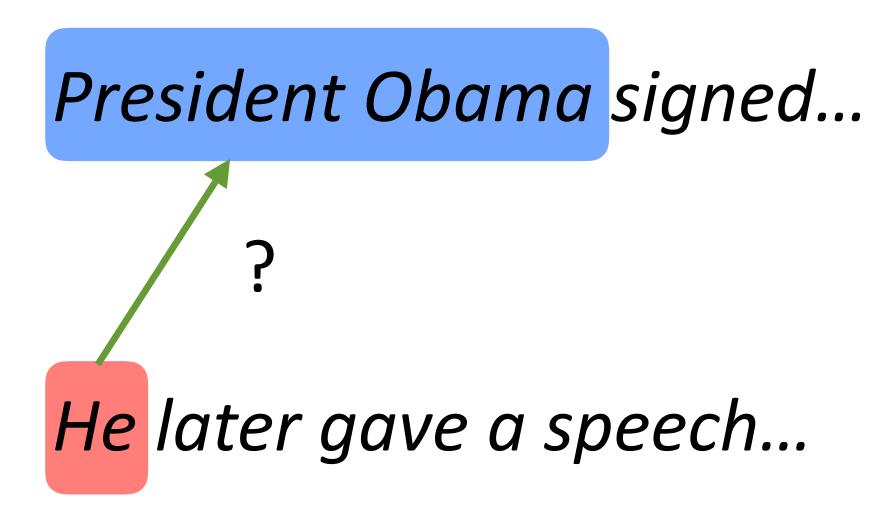
	Model	RT	SST fine	SST bin	IMDB	Time (s)	
	DAN-ROOT		46.9	85.7		31	
	DAN-RAND	77.3	45.4	83.2	88.8	136	
	DAN	80.3	47.7	86.3	89.4	136	lyyer et al. (2015)
	NBOW-RAND	76.2	42.3	81.4	88.9	91	
	NBOW	79.0	43.6	83.6	89.0	91	
	BiNB		41.9	83.1			Wang and
	NBSVM-bi	79.4			91.2		
	RecNN*	77.7	43.2	82.4			Manning (2012)
	RecNTN*		45.7	85.4			
	DRecNN		49.8	86.6		431	
	TreeLSTM		50.6	86.9			
	$DCNN^*$		48.5	86.9	89.4		
	PVEC*		48.7	87.8	92.6		
	CNN-MC	81.1	47.4	88.1		2,452	Kim (2014)
	WRRBM*				89.2		

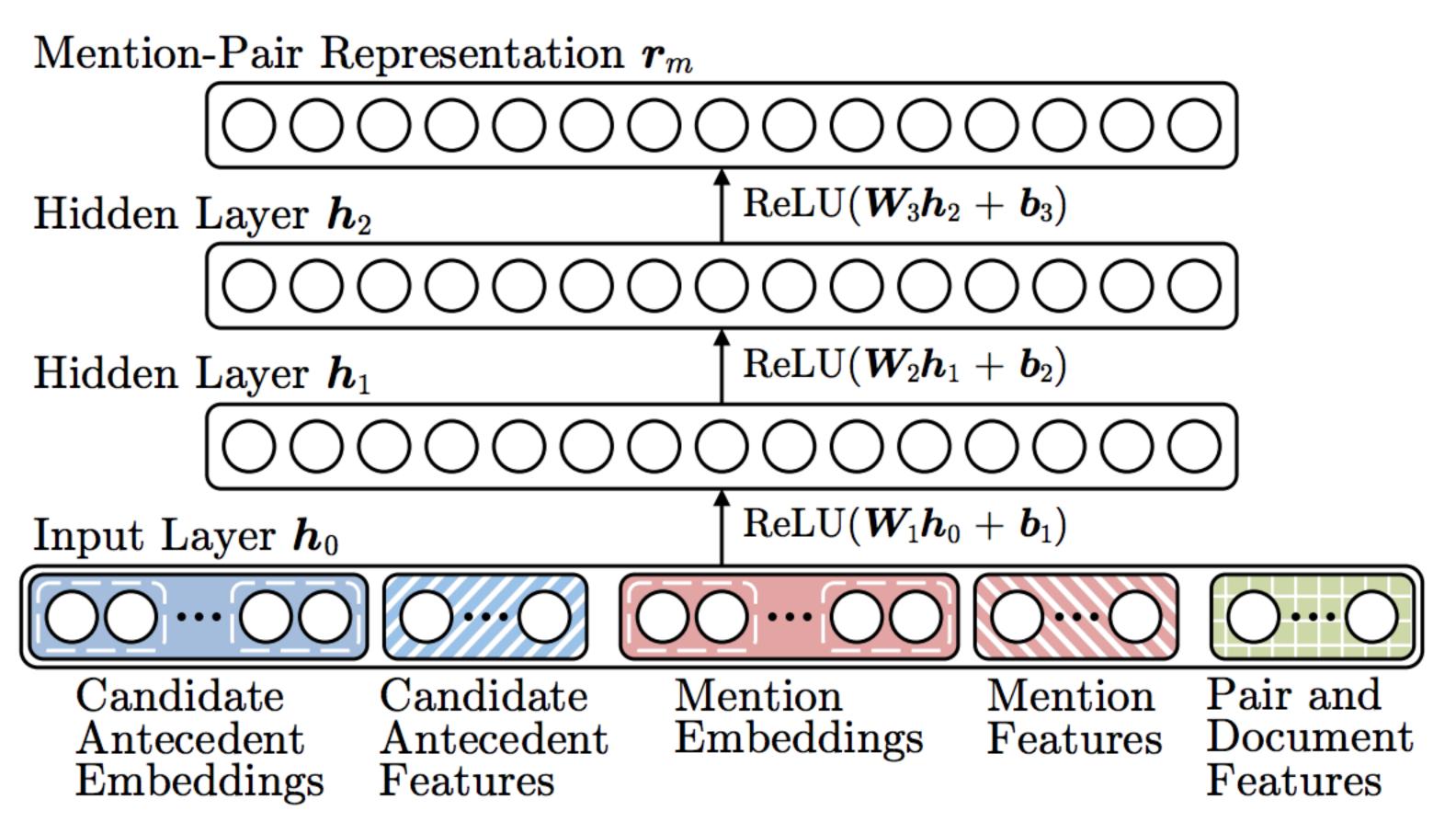
Bag-of-words

Tree RNNs / CNNS / LSTMS

Coreference Resolution

Feedforward networks identify coreference arcs





Clark and Manning (2015), Wiseman et al. (2015)

Implementation Details

Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives

$$y = x * x$$
 \longrightarrow $(y,dy) = (x * x, 2 * x * dx)$ codegen

- Computation is now something we need to reason about symbolically
- Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

```
class FFNN(nn.Module):
    def init (self, inp, hid, out):
        super(FFNN, self). init ()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x)))
```


Computation Graphs in Pytorch

```
ei*: one-hot vector
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x}))) of the label
                                     (e.g., [0, 1, 0])
ffnn = FFNN()
def make update(input, gold label):
   ffnn.zero grad() # clear gradient variables
   probs = ffnn.forward(input)
   loss = torch.neg(torch.log(probs)).dot(gold label)
   loss.backward()
   optimizer.step()
```


Training a Model

Define a computation graph

For each epoch:

For each batch of data:

Compute loss on batch

Autograd to compute gradients and take step

Decode test set

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

▶ Batch sizes from 1-100 often work well

Next Time

More implementation details: practical training techniques

Word representations / word vectors

word2vec, GloVe