CS388: Natural Language Processing
Lecture 6: Neural Networks

Greg Durrett

Administrivia

» Mini 1 graded, posted on Canvas

» Xi Ye (88.0 F1), Quang Duong (87.3 F1), Uday Kusupati (87.2 F1)
6 students in the 86 range, rest are 85 or below

» Test F1s << dev F1

» Changing thresholds / imbalanced classification
» POS/chunk features

» Someone got 86.3 with only 7 features total, classifier is a dictionary

» Project 1 due in 9 days

» Small bug fixed in BadNerModel (no impact on the code you write)

This Lecture

» Beam search: in a few lectures

» Neural network history
» Neural network basics

» Feedforward neural networks + backpropagation
» Applications

» Implementing neural networks (if time)

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

I_ CS: layer F6 layer OUTPUT

32x32
120

LAONN

FuII comjlectnon | Gaussnan connections
Convolutions Subsampling Convolutnons Subsamplmg Full connection

S2: 1. maps
6@14x14

=

net,_ S

» LSTMs: Hochreiter and Schmidhuber (1997)

A\
e

» Henderson (2003): neural shift-reduce parser, not SOTA

O
16
o2

N

2008-2013: A glimmer of light...

Input Window

Text cat sat on the mat

» Collobert and Weston 2011: “NLP (almost) from scratch” ~ *==* ==~ =
» Feedforward neural nets induce features for e~ |
sequential CRFs (“neural CRF”) o
o
» 2008 version was marred by bad experiments, wixd s
claimed SOTA but wasn’t, 2011 version tied SOTA " —

» Krizhevskey et al. (2012): AlexNet for vision

» Socher 2011-2014: tree-structured RNNs working okay

. hot very good..
a b C

2014: Stuft starts working

» Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

» Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work
for NLP?)

» Chen and Manning transition-based dependency parser (even feedforward
networks work well for NLP?)

» 2015: explosion of neural nets for everything under the sun

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

» Regularization: dropout is pretty helpful

» Computers not big enough: can’t run for enough iterations

» Inputs: need word representations to have the right continuous semantics

Neural Net Basics

Neural Networks

» Linear classification: argmax,w ' f(z,y)
» How can we do nonlinear classification? Kernels are too slow...
» Want to learn intermediate conjunctive features of the input

the movie was not all that good

l[contains not & contains good]

Neural Networks: XOR

» Let’s see how we can use neural nets

to learn a simple nonlinear function L2
1 0
» Inputs 1, To
(generally x = (x1,...,Zm)) . .
XL
» Output ¥ 1
(generally Y = (ylv tee 7yn)) L1 Lo Y= XOR L9
0 O 0
0 1 1
1 0 1
1 1 0

Neural Networks: XOR

L2 Y = a1T1 + a2 X

y = a121 + azx2 + ag tanh(x; + x2) &

1 1)

or

4 T (looks like action
B potential in neuron)

1 ! }

L1 L2 L1 XOR L9 /
0 0 0
0 1 1 2 p 1 ;
1 0 1 /
1 1 0

Neural Networks: XOR

L2 Y = a1x1 + a2 X

Yy = a1x1 + asxo + ag tanh(x; + o) ‘/
y = —x1 — X2 + 2tanh(xq + x2)
zl A “Or”

0 0 0 L2
0 1 1
1 0 1
1 1 0

XOR

T A
e
e
\\\.\\.\

Y = —25131 — T9o T+ Qtanh(xl -+ .CUQ)

V)
-
S
O
=
)
)
Z
(O
S
-
Q
Z

-1

Inot]

the movie was not all that good

Neural Networks

Linear model: Yy = W - X + b

y=g(W-X+b>
WX—I—b

[N

Nonlinear Warp Shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

...possible because
Linear classifier Neural network we transformed the

=

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

|npUt First

Layer
&
N

@0%:‘ X
SRS
(s,

r W vYy V

(K7

& ®)

Second
Layer

Q

S S (2)

<

y =g9(Wz +b)
z = g(Vy + c)

z=g(Vg(Wx + b) + c)

W_/

output of first layer

“Feedforward” computation (not

recurrent)

Check: what happens if no nonlinearity?
More powerful than basic linear models?

= V(Wx

b)

C

Adopted from Chris Dyer

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropagation

Logistic Regression with NNs

—l_ ° oo
P(y|x) = exp(w_ f(%,y)) » Single scalar probability

Zy’ exp(wa(X, y/))
" Compute scores for all possible

P(y|x) = softmax ([w' f(x,y)],ey) labels at once (returns vector)

softmax(p); = exp(pi) » softmax: exps and normalizes a
D i €xXp(pir) given vector

P(y|x) = softmax(W f(x)) » Weight vector per class;
W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))
num classes
d hidden units probs

H
g

d X n matrix nonlinearity = num classes x d
n features (tanh, relu, ...) matrix

Training Neural Networks

P(y|x) = softmax(Wz) z =g(V f(x))

» Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - e;+)
» i*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,17)=Wz-ep — logZexp(Wz) - €

J

Computing Gradients

L(x,2")=Wz-ex — 10gZexp(Wz) - €

J
» Gradient with respect to W
o z; — Py =1|x)z; ifj=i*
L(x,1") = : :
OWi; —P(y =1i|x)z; otherwise

» Looks like logistic regression with z as the features!

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

.
g
Z 8W

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

5 Activations at

hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1") Oz
8‘/7;3' B 8Z 6"/;
w‘e math...]

err(root) = e;+ — P(y|x) 0L(x, 1"
dim=m

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

err(z)

» Can forget everything after z, treat \
it as the output and keep backpropping

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

III

» Easy to update parameters based on “error signal” from next layer,

keep pushing error signal back as backpropagation

» Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs f(x)

Fed raises interest rates in order to .. previous word

» Word embeddings for each word form input

(sasipJ)quia

» ~1000 features here — smaller feature vector ~ curr word
than in sparse models, but every feature fires on

every example
next word

(D
3
=2
S.
~
Q)
-
M
n
=
D
3
2
-
Q
~
M
2

» Weight matrix learns position-dependent

processing of the words other words, feats, etc. L=
Botha et al. (2017)

NLP with Feedforward Networks

COe00 Py

]
[OOOOOCT)OOOOO] hi » Hidden layer mixes these
[@55_@_@5@@_@@@@@@'Q‘_‘Q‘i ho different signals and learns
ég g 29 ga feature conjunctions

o m— | F——ewe

igrams at E trigrams

no queue at

Botha et al. (2017)

» Multilingual tagging results:

NLP with Feedforward Networks

Model Acc. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k - 6.63m
Small FF 94716 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.31m
2 Dim. 95.39 143k 0.7 0.18m

» Gillick used LSTMs; this is smaller, faster, and better

Botha et al. (2017)

Sentiment Analysis

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

] \Tl | | he=f(W2-hi + by)
hl - f(Wl av + bl)

‘ 4

av =), 6 G
// \ g
| ENEENIEE | |

Predator 18 a masterpiece

c1 C2 c3 Ca lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
fine bin (S)
DAN-ROOQOT — 469 85.7 — 31
DAN-RAND 77.3 454 83.2 88.8 136
DAN 80.3 477 863 894 136 | lyyer et al. (2015)
NBOW-RAND 76.2 423 814 88.9 91
NBOW 790 436 83.6 89.0 91
NBSVM-bi 794 — — 912 — Manrino (201
RecNN* 777 432 824 — _ anning)
RecNTN™ — 457 854 — —
DRecNN — 498 86.6 — 431
Tree RNNs / TreeLSTM — 50.6 86.9 — —
CNNS / LSTMS DCNN* 485 869 894 @ —
PVEC* 487 878 926 — |
CNN-MC CNN-MC 81.1 474 881 — 2452] Kim (2014)
WRRBM™ — 89 2 —

Coreference Resolution

» Feedforward networks identify coreference arcs

Mention-Pair Representation 7,

President Obama signed... idden I[Jie?h@ eielele ?RSSWSQ?IS L. O]
, OO0OO000O00O00OO0OOO0
. Hidden Layer h; TRGLU(thl + by)
He later gave a speech... [OOOOOQOOOOOOOOO]
(Input Layer hy TRGLU(Wlho + b1) ‘
[OO"'OO][O"'O] [OO'"OO](O'"OJ [O"'Ol
Candidate Candidate Mention Mention Pair and
Antecedent Antecedent Embeddings Features Document
Embeddings Features Features

Clark and Manning (2015), Wiseman et al. (2015)

Implementation Details

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

y =X *x =P (y,dy) = (x * X, 2 * x * dx)
codegen

» Computation is now something we need to reason about symbolically

» Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

» Define forward pass for P(y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
def 1nit (self, 1inp, hid, out):
super (FFNN, self). 1nit ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self.W = nn.Linear (hid, out)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

Computation Graphs in Pytorch

el*: one-hot vector

P(y|X) — SOftmaX(Wg(Vf(X))) of the label
(e.g., [0, 1, O07)
ffnn = FFNN() ,//
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

loss.backward()

optimizer.step()

Training a Model

Define a computation graph

For each epoch:
For each batch of data:

Compute loss on batch

Autograd to compute gradients and take step

Decode test set

Batching
» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

Next Time

» More implementation details: practical training techniques

» Word representations / word vectors

» word2vec, GloVe

