CS388: Natural Language Processing Lecture 14: Word Embeddings

Greg Durrett

This Lecture

- ▶ Training
- Word representations
- word2vec
- ▶ Evaluating word embeddings

Training Tips

Training Basics

- ▶ Basic formula: compute gradients on batch, use first-order opt. method
- ▶ How to initialize? How to regularize? What optimizer to use?
- ▶ This lecture: some practical tricks. Take deep learning or optimization courses to understand this further

How does initialization affect learning?

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

- ▶ How do we initialize V and W? What consequences does this have?
- Nonconvex problem, so initialization matters!

How does initialization affect learning?

Nonlinear model...how does this affect things?

- If cell activations are too large in absolute value, gradients are small
- ▶ ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative

Initialization

- 1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change
- 2) Initialize too large and cells are saturated
- ▶ Can do random uniform / normal initialization with appropriate scale
- ▶ Glorot initializer: $U\left[-\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}, +\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}\right]$
 - ▶ Want variance of inputs and gradients for each layer to be the same
- ▶ Batch normalization (Ioffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy

(b) After applying dropout.

▶ One line in Pytorch/Tensorflow

Srivastava et al. (2014)

Optimizer

- Adam (Kingma and Ba, ICLR 2015) is very widely used
- Adaptive step size like Adagrad, incorporates momentum

Optimizer

- Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)
- ▶ Check dev set periodically, decrease learning rate if not making progress

(f) Generative Parsing (Development Set)

Structured Prediction

- ▶ Four elements of a machine learning method:
- ▶ Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network
- Inference: define the network, your library of choice takes care of it (mostly...)
- Training: lots of choices for optimization/hyperparameters

Word Representations

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- ▶ Continuous model <-> expects continuous semantics from input
- "Can tell a word by the company it keeps" Firth 1957

[Finch and Chater 92, Shuetze 93, many others]

Discrete Word Representations

▶ Brown clusters: hierarchical agglomerative *hard* clustering (each word has one cluster, not some posterior distribution like in mixture models)

- $\ \, \textbf{Maximize} \ \, P(w_i|w_{i-1}) = P(c_i|c_{i-1})P(w_i|c_i)$
- ▶ Useful features for tasks like NER, not suitable for NNs

Brown et al. (1992)

Skip-Gram

Predict one word of context from word

the dog bit the man

- ▶ Another training example: bit -> the
- ▶ Parameters: d x |V| vectors, |V| x d output parameters (W) (also usable as vectors!)
 Mikolov et al. (2013)

Hierarchical Softmax

 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax}(W(c(w_{-1}) + c(w_{+1}))) \qquad P(w'|w) = \operatorname{softmax}(We(w))$

▶ Matmul + softmax over |V| is very slow to compute for CBOW and SG

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- ▶ log(|V|) binary decisions

- Standard softmax: [|V| x d] x d
- Hierarchical softmax: log(|V|) dot products of size d,

|V| x d parameters Mikolov et al. (2013)

Skip-Gram with Negative Sampling

▶ Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

$$\begin{array}{ll} (\textit{bit, the}) => +1 \\ (\textit{bit, cat}) => -1 \\ (\textit{bit, a}) => -1 \\ (\textit{bit, fish}) => -1 \end{array} \qquad \begin{array}{ll} P(y=1|w,c) = \frac{e^{w\cdot c}}{e^{w\cdot c}+1} & \text{words in similar contexts select for similar c vectors} \end{array}$$

- → d x |V| vectors, d x |V| context vectors (same # of params as before)
- $\text{ Objective = } \log P(y=1|w,c) \frac{1}{k} \sum_{i=1}^n \log P(y=0|w_i,c)$

Mikolov et al. (2013)

Connections with Matrix Factorization

 Skip-gram model looks at word-word co-occurrences and produces two types of vectors

▶ Looks almost like a matrix factorization...can we interpret it this way?

Levy et al. (2014)

Skip-Gram as Matrix Factorization

Skip-gram objective exactly corresponds to factoring this matrix:

- If we sample negative examples from the uniform distribution over words
- ...and it's a weighted factorization problem (weighted by word freq)

Levy et al. (2014)

GloVe

 Also operates on counts matrix, weighted regression on the log co-occurrence matrix (weights f)

- ▶ Objective = $\sum_{i,j} f(\operatorname{count}(w_i, c_j)) \left(w_i^\top c_j + a_i + b_j \log \operatorname{count}(w_i, c_j) \right)^2$
- ▶ Constant in the dataset size (just need counts), quadratic in voc size
- ▶ By far the most common word vectors used today (5000+ citations)

Pennington et al. (2014)

Preview: Context-dependent Embeddings

▶ How to handle different word senses? One vector for balls

- ▶ Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors
- ▶ Context-sensitive word embeddings: depend on rest of the sentence
- ▶ Huge improvements across nearly all NLP tasks over GloVe

Peters et al. (2018)

Evaluation

Evaluating Word Embeddings

- ▶ What properties of language should word embeddings capture?
- ▶ Similarity: similar words are close to each other
- ▶ Analogy:

good is to best as smart is to ??? Paris is to France as Tokyo is to ???

Similarity

	WordSim	WordSim	Bruni et al	Radinsky et al.	Luong et al	Hill et al
Method	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex
PPMI	.755	.697	.745	.686	.462	.393
SVD	.793	.691	.778	.666	.514	.432
SGNS	.793	.685	.774	.693	.470	.438
GloVe	.725	.604	.729	.632	.403	.398

- ▶ SVD = singular value decomposition on PMI matrix
- ▶ GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't matter in practice

Levy et al. (2015)

Hypernymy Detection

- ▶ Hypernyms: detective is a person, dog is a animal
- ▶ Do word vectors encode these relationships?

Dataset	TM14	Kotlerman 2010	HypeNet	WordNet	Avg (10 datasets)
Random	52.0	30.8	24.5	55.2	23.2
Word2Vec + C	52.1	39.5	20.7	63.0	25.3
GE + C	53.9	36.0	21.6	58.2	26.1
GE + KL	52.0	39.4	23.7	54.4	25.9
DIVE + $C \cdot \Delta S$	57.2	36.6	32.0	60.9	32.7

word2vec (SGNS) works barely better than random guessing here

Chang et al. (2017)

Analogies

(king - man) + woman = queen

king + (woman - man) = queen

- ▶ Why would this be?
- woman man captures the difference in the contexts that these occur in
- Dominant change: more "he" with man and "she" with woman — similar to difference between king and queen

Analogies

Method	Google	MSR			
Memod	Add / Mul	Add / Mul			
PPMI	.553 / .679	.306 / .535			
SVD	.554 / .591	.408 / .468			
SGNS	.676 / .688	.618 / .645			
GloVe	.569 / .596	.533 / .580			

▶ These methods can perform well on analogies on two different datasets using two different methods

Maximizing for
$$b$$
: Add = $\cos(b, a_2 - a_1 + b_1)$ Mul = $\frac{\cos(b_2, a_2)\cos(b_2, b_1)}{\cos(b_2, a_1) + \epsilon}$

Levy et al. (2015)

Using Semantic Knowledge

- ▶ Structure derived from a resource like WordNet
- ▶ Doesn't help most problems

Faruqui et al. (2015)

Using Word Embeddings

- ▶ Approach 1: learn embeddings as parameters from your data
 - ▶ Often works pretty well
- ▶ Approach 2: initialize using GloVe/ELMo, keep fixed
 - ▶ Faster because no need to update these parameters
- ▶ Approach 3: initialize using GloVe, fine-tune
 - ▶ Works best for some tasks, but not used for ELMo

Compositional Semantics

- ▶ What if we want embedding representations for whole sentences?
- ▶ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)
- ▶ Is there a way we can compose vectors to make sentence representations? Summing?
- Will return to this in a few weeks as we move on to syntax and semantics

Takeaways

- ▶ Lots to tune with neural networks
- ▶ Training: optimizer, initializer, regularization (dropout), ...
- ▶ Hyperparameters: dimensionality of word embeddings, layers, ...
- ▶ Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- ▶ Lots of pretrained embeddings work well in practice, they capture some desirable properties
- ▶ Even better: context-sensitive word embeddings (ELMo)
- ▶ Next time: RNNs and CNNs