
CS388:	Natural	Language	Processing	
Lecture	8:	RNNs

Greg	Durrett



Administrivia

‣ Project	1	due	Thursday	at	5pm



Recall:	Training	Tips

‣ Parameter	iniDalizaDon	is	criDcal	to	get	good	gradients,	some	useful	
heurisDcs	(e.g.,	Glorot	iniDalizer)

‣ Dropout	is	an	effecDve	regularizer

‣ Think	about	your	
opDmizer:	Adam	
or	tuned	SGD	
work	well



Recall:	Word	Vectors

good
enjoyable

bad

dog

great

is



Recall:	ConDnuous	Bag-of-Words
‣ Predict	word	from	context the	dog	bit	the	man

dog

the

+

sum,	size	d
P (w|w�1, w+1)

soUmaxMulDply 
by	W

‣Matrix	factorizaDon	approaches	useful	for	learning	
vectors	from	really	large	data

Mikolov	et	al.	(2013)



Using	Word	Embeddings
‣ Approach	1:	learn	embeddings	directly	from	data	in	your	neural	model,	
no	pretraining

‣ Approach	2:	pretrain	using	GloVe,	keep	fixed

‣ Approach	3:	iniDalize	using	GloVe,	fine-tune

‣ Faster	because	no	need	to	update	these	parameters

‣ Not	as	commonly	used	anymore

‣ OUen	works	pre^y	well

‣ Need	to	make	sure	GloVe	vocabulary	contains	all	the	words	you	need	



ComposiDonal	SemanDcs
‣What	if	we	want	embedding	representaDons	for	whole	sentences?

‣ Skip-thought	vectors	(Kiros	et	al.,	2015),	similar	to	skip-gram	generalized	
to	a	sentence	level	(more	later)

‣ Is	there	a	way	we	can	compose	vectors	to	make	sentence	
representaDons?	Summing?	RNNs?



This	Lecture

‣ Vanishing	gradient	problem

‣ Recurrent	neural	networks

‣ LSTMs	/	GRUs

‣ ApplicaDons	/	visualizaDons



RNN	Basics



RNN	MoDvaDon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiDon	in	the	
feature	vector	has	fixed	semanDcs

‣ Instead,	we	need	to:
1)	Process	each	word	in	a	uniform	way

the		movie		was			great that			was			great					!

2)	…while	sDll	exploiDng	the	context	that	that	token	occurs	in

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)



RNN	AbstracDon
‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	that	
hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y



RNN	Uses
‣ Transducer:	make	some	predicDon	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	senDment	(matmul	+	soUmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	soUmax



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

‣ Long	history!	(invented	in	the	late	1980s)

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)



Training	Elman	Networks

the		movie		was			great

predict	senDment

‣ “BackpropagaDon	through	Dme”:	build	the	network	as	one	big	
computaDon	graph,	some	parameters	are	shared

‣ RNN	potenDally	needs	to	learn	how	to	“remember”	informaDon	for	a	
long	Dme!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+

‣ “Correct”	parameter	update	is	to	do	a	be^er	job	of	remembering	the	
senDment	of	favorite



Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	
not	in	[-2,	2],	gradient	is	almost	0

<-	gradient<-	smaller	gradient<-	Dny	gradient

h^p://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs/GRUs



Gated	ConnecDons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	[0,	1]

f = �(W xf

x

t

+Whf

h

t�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣ 	If	f	=	1,	we	simply	sum	up	a	funcDon	of	
all	inputs	—	gradient	doesn’t	vanish!



LSTMs

‣ “Cell”	c	in	addiDon	to	hidden	state	h

‣ Vector-valued	forget	gate	f	depends	on	the	h	hidden	state

‣ Basic	communicaDon	flow:	x	->	c	->	h,	each	step	of	this	process	is	gated	
in	addiDon	to	gates	from	previous	Dmesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xf

x

t

+Whf

h

t�1)



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h^p://colah.github.io/posts/2015-08-Understanding-LSTMs/
Goldberg	lecture	notes

‣ f,	i,	o	are	gates	that	control	informaDon	flow
‣ g	reflects	the	main	computaDon	of	the	cell



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can	we	ignore	c	in	our	current	computaDon?

‣ Can	we	ignore	a	parDcular	input	x?
‣ Can	an	LSTM	sum	up	its	inputs	x?

‣ Can	we	output	something	without	changing	c?



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h^p://colah.github.io/posts/2015-08-Understanding-LSTMs/
Goldberg	lecture	notes

‣ Ignoring	recurrent	state	enDrely:

‣ Lets	us	discard	stopwords
‣ Summing	inputs:

‣ Lets	us	get	feedforward	layer	over	token
‣ Ignoring	input:

‣ Lets	us	compute	a	bag-of-words 
representaDon



LSTMs

‣ Gradient	sDll	diminishes,	but	in	a	controlled	way	and	generally	by	less	—	
usually	iniDalize	forget	gate	=	1	to	remember	everything	to	start

<-	gradientsimilar	gradient	<-

h^p://colah.github.io/posts/2015-08-Understanding-LSTMs/



Understanding	LSTM	Parameters

‣ IniDalize	hidden	layer	randomly

‣ Need	to	learn	how	the	gates	work:	what	do	
we	forget/remember?

xj

f
g

i
o

hjhj-1

cj-1 cj

h^p://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ g	uses	an	arbitrary	nonlinearity,	this	is	the	
“layer”	of	the	cell



GRUs

xj

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU:	faster,	a	bit	simpler‣ LSTM:	more	complex	and	
slower,	may	work	a	bit	be^er

X

hj

sj

σ X

+
1-z z

σ tanh
r

‣ Two	gates:	z	(forget,	mixes	s	and	
h)	and	r	(mixes	h	and	x)



What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predicDon	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classificaDon	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transformaDon	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors



MulDlayer	BidirecDonal	RNN

‣ Sentence	classificaDon	
based	on	concatenaDon	
of	both	final	outputs

‣ Token	classificaDon	based	on	
concatenaDon	of	both	direcDons’	
token	representaDons

the		movie		was			great the		movie		was			great



Training	RNNs

the		movie		was			great

‣ Loss	=	negaDve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	enDre	network
‣ Example:	senDment	analysis



Training	RNNs

the		movie		was			great

‣ Loss	=	negaDve	log	likelihood	of	probability	of	gold	predicDons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)



ApplicaDons



What	can	LSTMs	model?
‣ SenDment

‣ TranslaDon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leU-to-right,	per-token	predicDon

‣ Encode	sentence	+	then	decode,	use	token	predicDons	for	a^enDon	
weights	(later	in	the	course)



Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Counter:	know	when	to	generate	\n
‣ Visualize	acDvaDons	of	specific	cells	(components	of	c)	to	understand	them



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Binary	switch:	tells	us	if	we’re	in	a	quote	or	not
‣ Visualize	acDvaDons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Stack:	acDvaDon	based	on	indentaDon
‣ Visualize	acDvaDons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	acDvaDon

‣ Visualize	acDvaDons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



What	can	LSTMs	model?
‣ SenDment

‣ TranslaDon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leU-to-right,	per-token	predicDon

‣ Encode	sentence	+	then	decode,	use	token	predicDons	for	a^enDon	
weights	(next	lecture)

‣ Textual	entailment

‣ Encode	two	sentences,	predict



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambiDous	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)

Premise Hypothesis



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capDons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy
300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)
300D	BiLSTM:	83%	accuracy	
																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process

‣ Later:	be^er	models	for	this



Takeaways
‣ RNNs	can	transduce	inputs	(produce	one	output	for	each	input)	or	
compress	the	whole	input	into	a	vector

‣ Useful	for	a	range	of	tasks	with	sequenDal	input:	senDment	analysis,	
language	modeling,	natural	language	inference,	machine	translaDon

‣ Next	Dme:	CNNs	and	neural	CRFs


