

This Lecture	
▶ CNNs	
CNNs for Sentiment	
Neural CRFs	CNNs

Convolutional Layer

- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input

image: n x n x k filter: m x m x k activations: (n - m + 1) x (n - m + 1) x 1

Collobert and Weston 2008, 2011

Neural CRFs with LSTMs		
 Chiu+Nichols: character CNNs instead of LSTMs 	Model Collobert et al. (2011)* Lin and Wu (2009)	F ₁ 89.59 83.78
 Lin/Passos/Luo: use external resources like Wikipedia 	Lin and Wu (2009)* Huang et al. (2015)* Passos et al. (2014) Passos et al. (2014)*	90.90 90.10 90.05 90.90
 LSTM-CRF captures the important aspects of NER: word context (LSTM), sub-word features (character LSTMs), outside knowledge (word embeddings) 	Luo et al. (2015)* + gaz Luo et al. (2015)* + gaz + linking Chiu and Nichols (2015) Chiu and Nichols (2015)*	89.9 91.2 90.69 90.77
	LSTM-CRF (no char) LSTM-CRF	90.20 90.94
	Chiu and Nichols (2015), Lample	et al. (2016

Takeaways

 CNNs are a flexible way of extracting features analogous to bag of ngrams, can also encode positional information

۲

- All kinds of NNs can be integrated into CRFs for structured inference. Can be applied to NER, other tagging, parsing, ...
- This concludes the ML/DL-heavy portion of the course. Starting Tuesday: syntax, then semantics