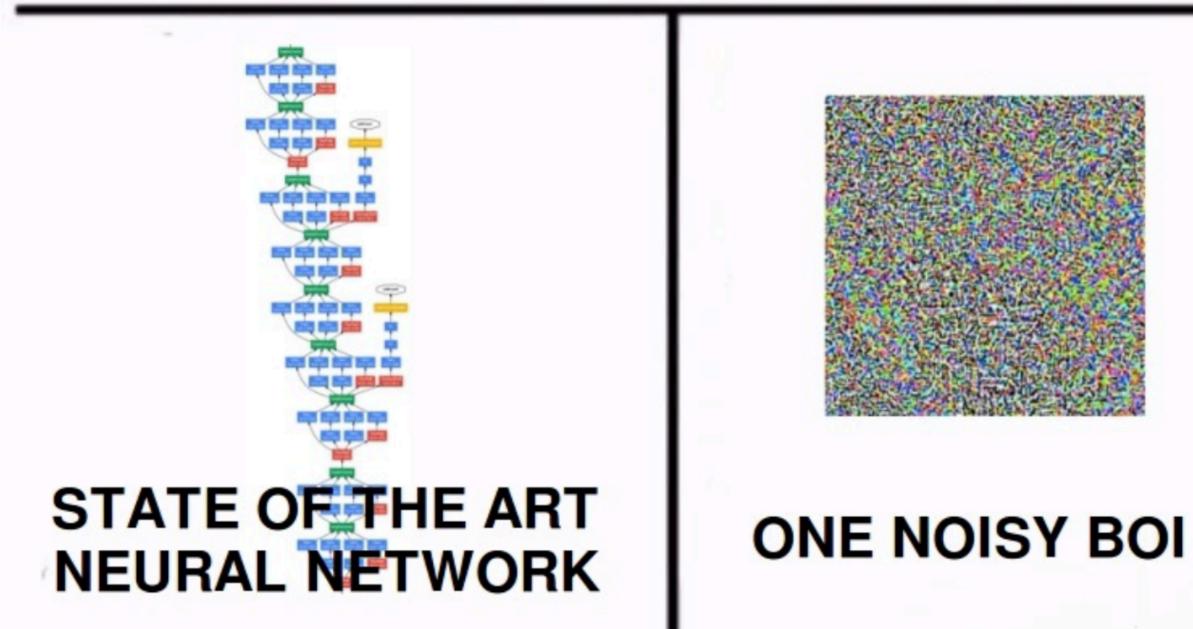
CS388: Natural Language Processing

Lecture 10: Interpreting NNs, Neural CRFs

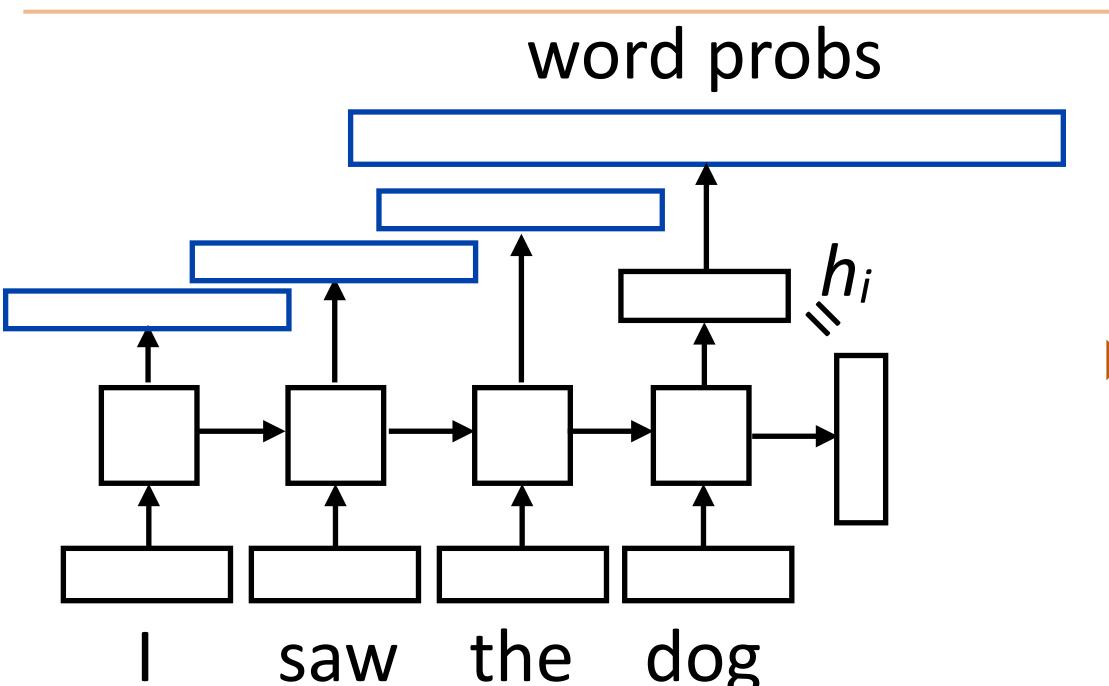
WHO WOULD WIN?



credit: Daniel Geng and Rishi Veerapaneni, ML @ Berkeley

Mini 2 due in one week

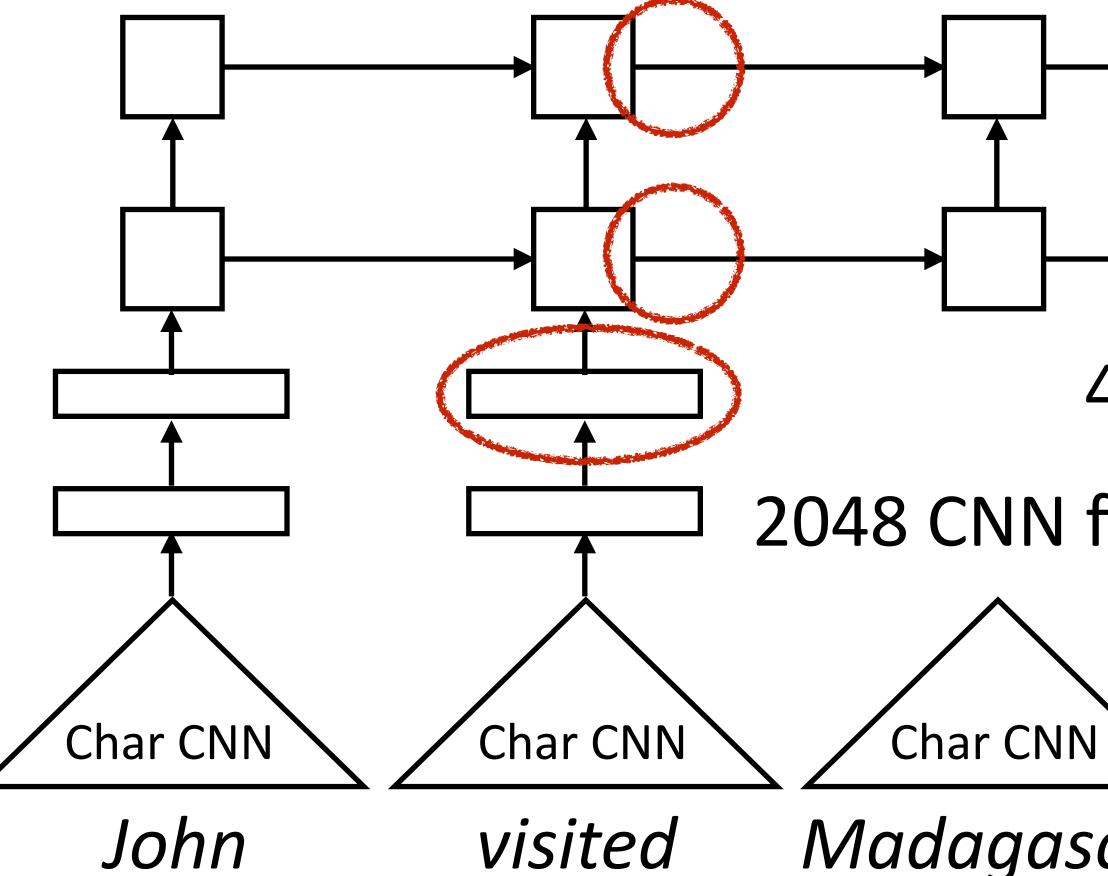
Administrivia



- Backpropagate through the network to simultaneously learn to predict next word given previous words at all positions
- Batch by grabbing many contiguous sequences of text from different parts of a large corpus

- $P(w | \text{context}) = \text{softmax}(W \mathbf{h}_i)$
- W is a (vocab size) x (hidden size) matrix

CNN over each word => RNN



next word

Representation of visited (plus vectors from backwards LM)

4096-dim LSTMs w/ 512-dim projections

2048 CNN filters projected down to 512-dim

Char CNN

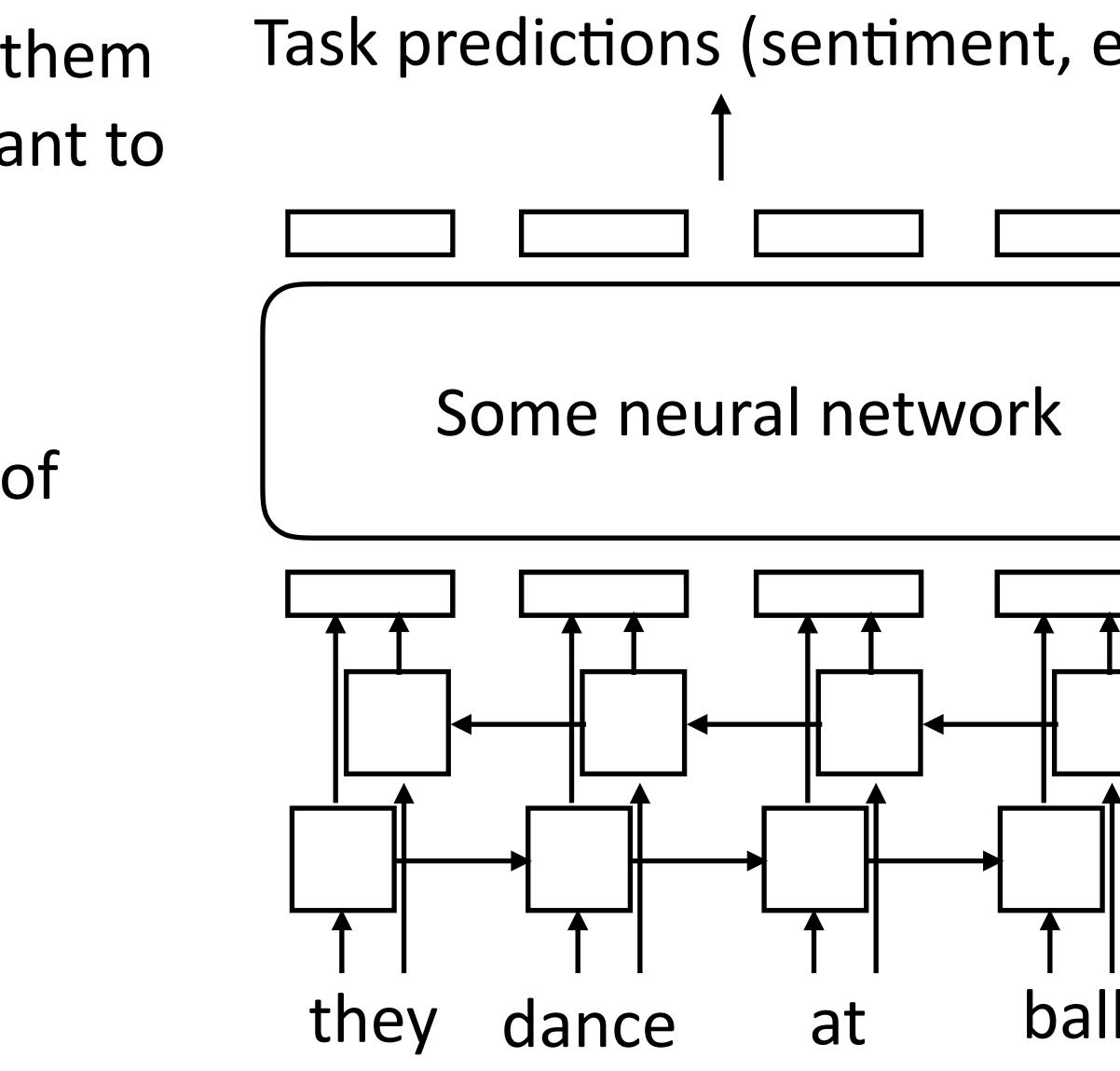
Madagascar yesterday

Peters et al. (2018)

- Take those embeddings and feed them into whatever architecture you want to use for your task
- For ELMo, best to use *frozen* embeddings: update the weights of your network but keep ELMo's parameters frozen

Peters, Ruder, Smith (2019)

Recall: ELMo



Ś	t	С	•)
]		
]		J
	S)		

Explaining neural networks' predictions

Neural CRFs

This Lecture

Explaining NNs

Given a data instance, identify properties of the input/model that led to a particular decision being made

the movie was great

- Suppose weight = (+5, +0), decision = +. what's the explanation?
- Suppose weight = (+5, +3), what's the explanation?
- Suppose weight = (+0.1, +5), what's the explanation?
- Explanation != "what a human would do". So any analysis of explanations has to intrinsically be about our model

What is an Explanation?

features = ([*great*], [*the*])

- Is the maximum weight always right?
 - that movie was not great, in fact it was terrible !
- Feats = unigrams and bigrams w(not great) = -5, w(great) = +5, w(terrible) = -3
- Classified as negative; what's the explanation?
- In the second decision. Correlated features make explanations confusing
- How can we define this? Deleting great would probably have little effect on the classification score

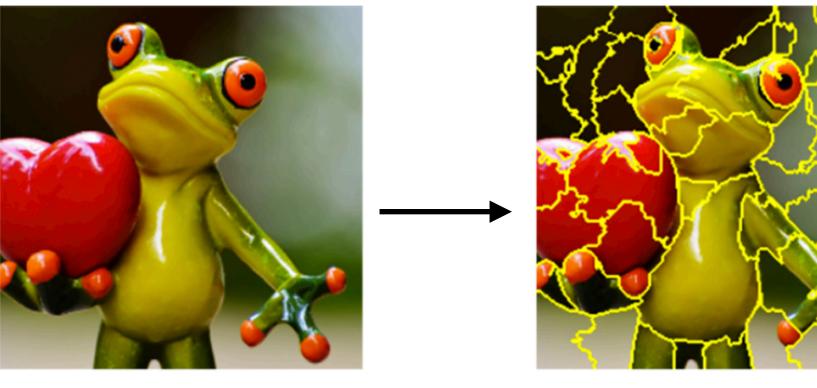
Idea 1: Looking at Weights

- that movie was not great, in fact it was terrible !
- that movie was not , in fact it was terrible !
- that movie was not great, in fact it was ! +
- Perturb input many times and assess the impact on the model's prediction
- LIME: Locally-Interpretable Model-Agnostic Explanations
 - Local because we'll do work to learn how to interpret this one example
 - Model-agnostic: treat model as black box

Idea 2: Counterfactuals

Model

Ribeiro et al. (2016)



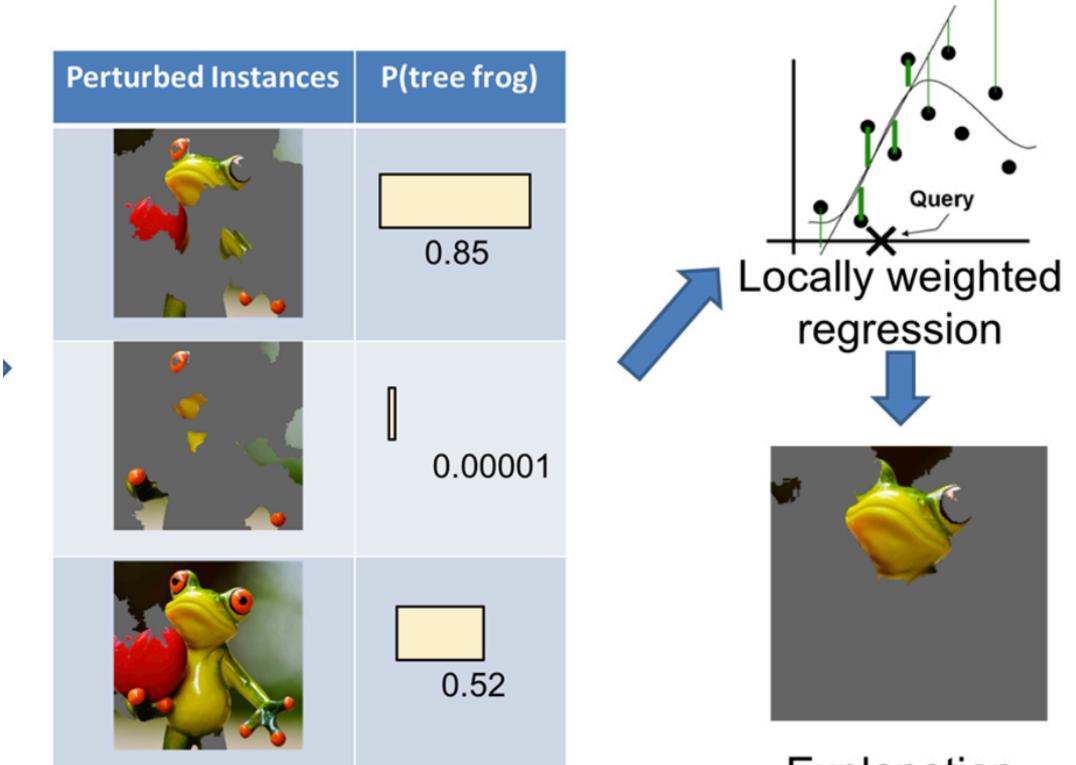
Original Image

Interpretable Components

Break input into components (for text classification: unigrams)

https://www.oreilly.com/learning/introduction-to-localinterpretable-model-agnostic-explanations-lime

LIME

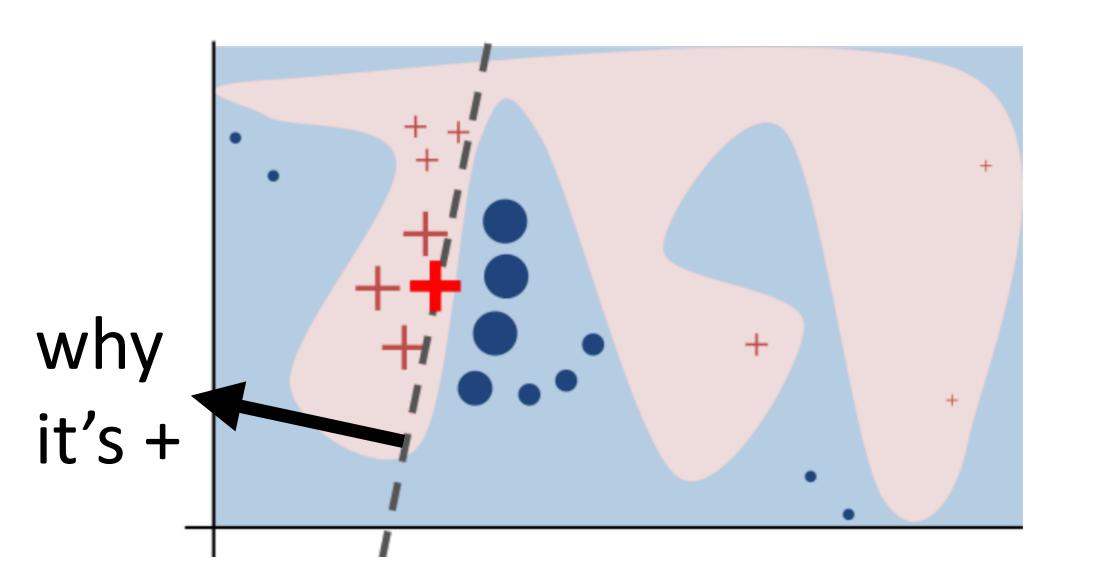


Explanation

Check predictions on Frain a model to subsets of those

predict predictions, look at that model's weights

- \blacktriangleright Break down input into many small pieces so the explanation is interpretable $x\in \mathbb{R}^d \to x' \in \{0,1\}^{d'}$
- Draw samples z' by perturbing x', then reconstruct z from z' and compute f(z) on that
- Now learn a model to predict f(z) based on z'. This model's weights will serve as the explanation for the decision



LIME

If z' is very coarse, can interpret but can't learn a good model of the boundary. If z' is too fine-grained, can interpret but not predict (e.g., z' = z)

Ribeiro et al. (2016)

Algorithm 1 Sparse Linear Explanations using LIME **Require:** Classifier f, Number of samples N **Require:** Instance x, and its interpretable version x'**Require:** Similarity kernel π_x , Length of explanation K $\mathcal{Z} \leftarrow \{\}$ for $i \in \{1, 2, 3, ..., N\}$ do $z'_i \leftarrow sample_around(x')$ $\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z'_i, f(z_i), \pi_x(z_i) \rangle$ end for return w

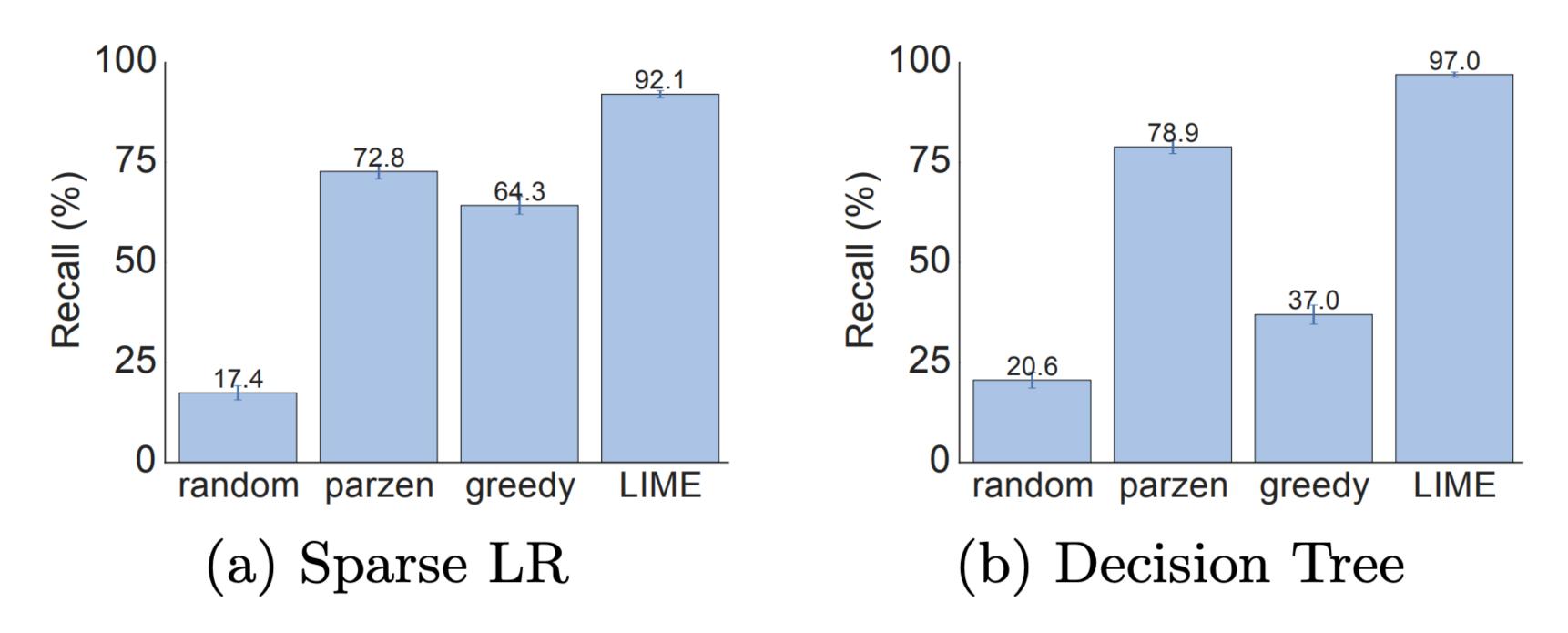
Use a sparse linear model to achieve a sparse explanation

LIME

$$z_i)\rangle$$

- $w \leftarrow \text{K-Lasso}(\mathcal{Z}, K) \triangleright \text{with } z'_i \text{ as features, } f(z) \text{ as target}$

Ribeiro et al. (2016)



interpretable classifiers on the books dataset.

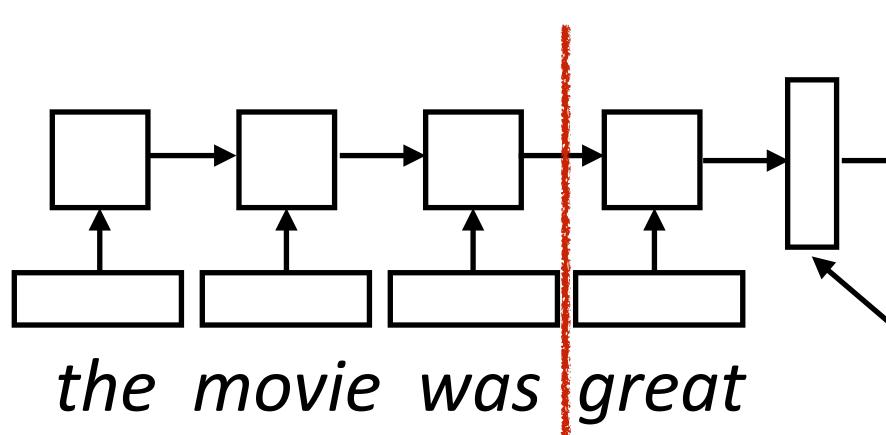
make predicted class prob drop by as much as possible

LIME

Figure 6: Recall on truly important features for two

Train a sparse model (only looks at 10 features of each example), then try to use LIME to recover the features. Greedy: remove features to

LIME is very complex, but looking at weights is too simple



- Suppose forget gate is very low and the first three words are forgotten
- How can we generally assess impact of a word on the prediction?
- We don't have "weights", but what can tell us about the impact of the input on the output?

Idea 3: Weights Revisited

- $P(+|\mathbf{x})$
- Can treat this layer like a linear model, but how to connect it to input? Often hundreds of features

Gradient-Based Methods

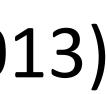
- S_c = score of class c I_0 = current image
- Approximate score with a first-order Taylor series approximation around the current image

$$S_c(I) pprox w^T I + b$$
 Min of $w = \left. rac{\partial S_c}{\partial I}
ight|_{I_0}$ choice of

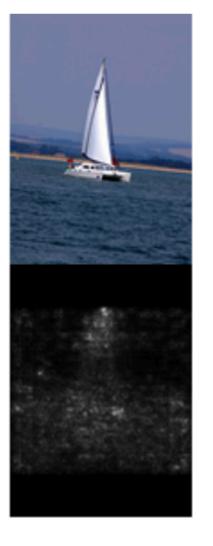
- To get single magnitude for a pixel, max over color channels. Can do the same for a word (max over vector positions)
- Sanity check: does this make sense for linear models?

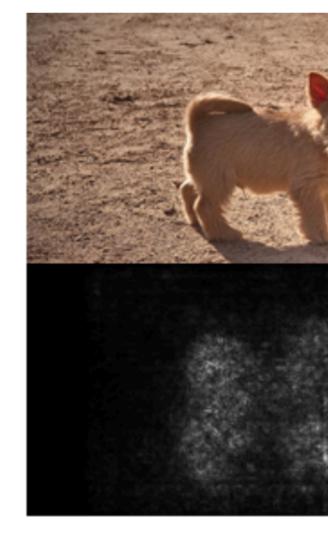
igher gradient magnitude = small nange in pixels leads to large nange in prediction

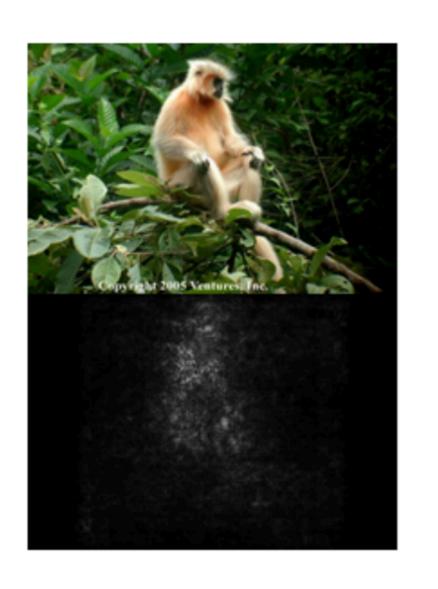
Simonyan et al. (2013)

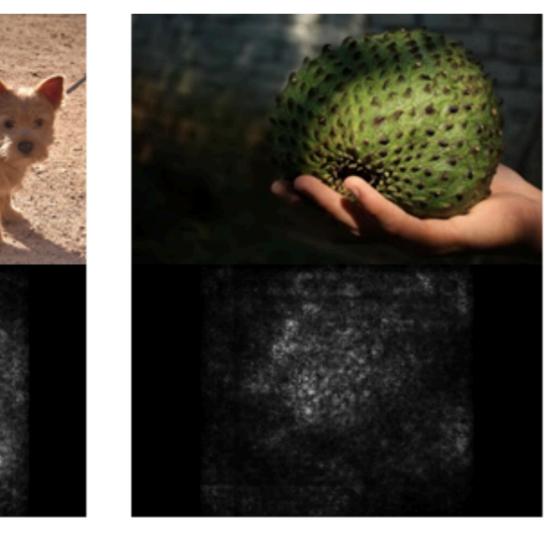


Gradient-Based Methods

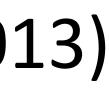




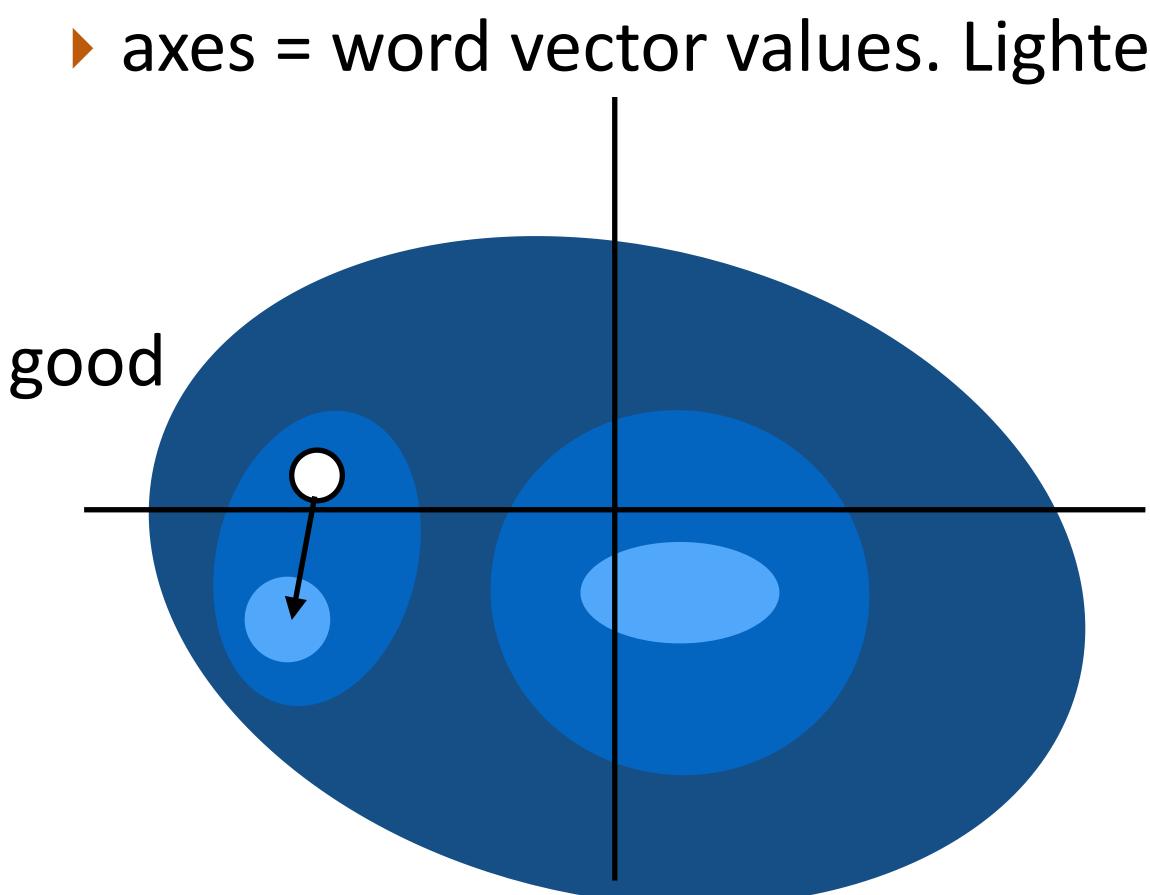




Simonyan et al. (2013)

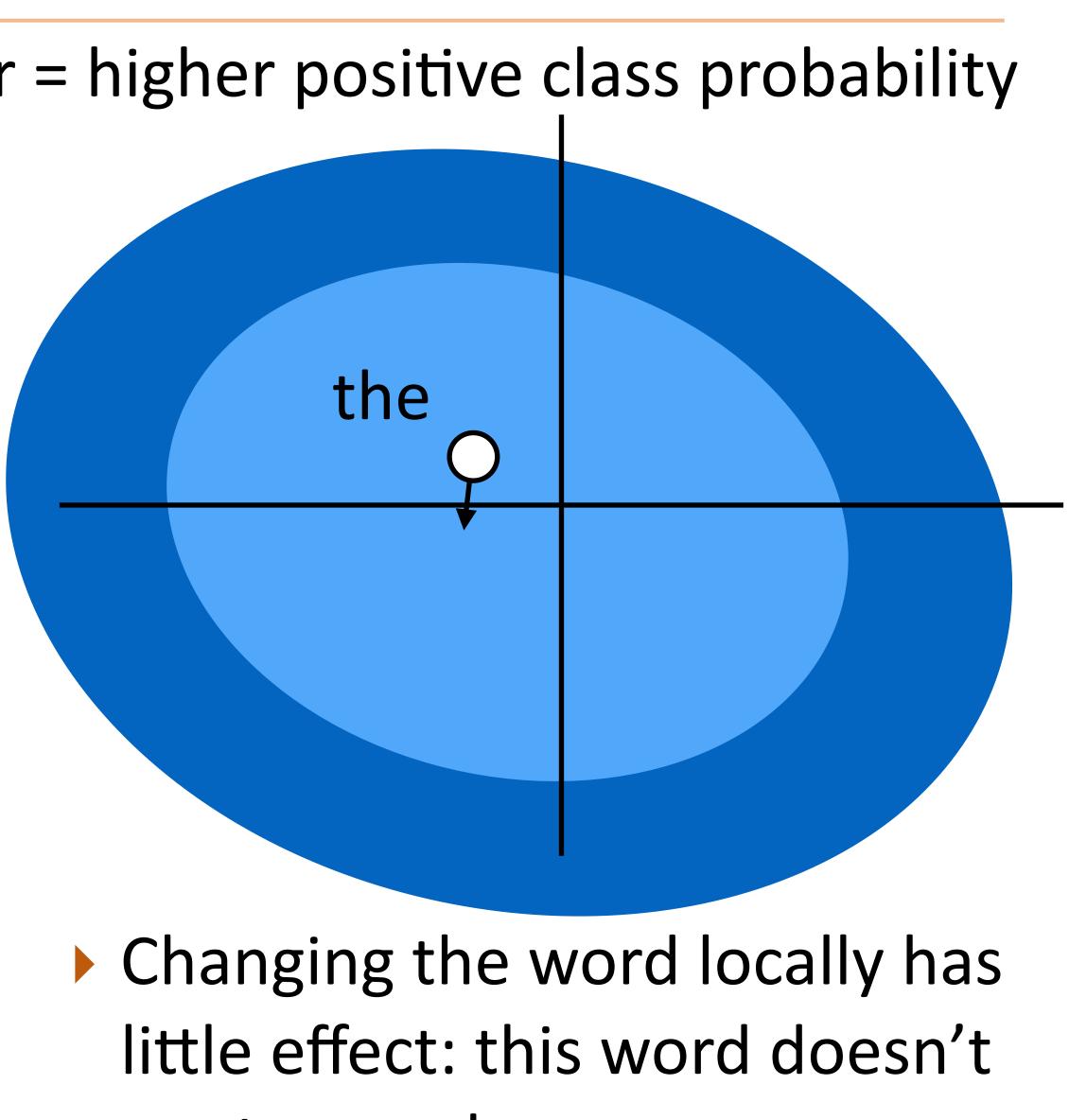


Gradient-based Method



Changing the word makes a difference: seems like the word is having some impact

axes = word vector values. Lighter color = higher positive class probability



matter much

- Explanation methods should predict features which, when deleted, cause the prediction to flip
- 1) Rank all features with the method. 2) Delete features and see how long it takes to flip the decision
- Omission: like the greedy algorithm from LIME comparison
- Saliency (gradient method) is better at finding the flip points than Nguyen (2018) LIME (but only slightly)

	20news		Movie	
	LR	MLP	LR	MLP
random	0.8617	0.8880	0.6586	0.6843
LIME-500	0.4394	0.5330	0.1747	0.1973
LIME-1000	0.3098	0.4164	0.0811	0.1034
LIME-1500	0.2607	0.3566	0.0613	0.0800
LIME-2000	0.2336	0.3235	0.0547	0.0743
LIME-5000	0.1895	0.2589	0.0474	0.0664
omission	0.1595	0.2662	0.0449	0.0644
saliency	-	0.2228	-	0.0639

Table 3: The % of words that needs to be deleted to change the prediction (the switching point).

other tasks?

I went to the store => Je suis allé au magasin

to the store => ???

- Translation system might totally break down, need to stay on the data manifold
- Sample similar datapoints from a variational autoencoder (VAE), more complex approach that requires another model

Explaining Sequence Models

These models might work well for bag-of-words models, but what about

Alvarez-Melis and Jaakkola (2019)

Train a model for task X and learn to predict task Y

E.g.: take ELMo representations, f then try to predict POS representation just a softmax layer

aren't able to capture

Idea 3: Probing

	Model	Acc.
	Collobert et al. (2011)	97.3
freeze them	Ma and Hovy (2016)	97.6
freeze them, ations with	Ling et al. (2015)	97.8
	CoVe, First Layer	93.3
	CoVe, Second Layer	92.8
	biLM, First Layer	97.3
	biLM, Second Layer	96.8
		•

Doesn't "explain" a prediction but can illuminate what models are and

- Looking at weights is generally hard for neural networks
- LIME is a good method for generating interpretable explanations, but not always easy to get right
- Gradient-based techniques can provide explanations, but these aren't perfect. Very "local" and don't consider what happens if a word changes to a different word
- Probing tasks can tell you generally what your network might be doing but are hard to interpret

Neural CRF Basics

NER Revisited

B-PER I-PER O O O B-ORG O 0 Barack Obama will travel to Hangzhou today for the G20 meeting. PERSON ORG

- Features in CRFs: I[tag=B-LOC & curr_word=Hangzhou], I[tag=B-LOC & prev_word=to], I[tag=B-LOC & curr_prefix=Han]
- Linear model over features
- Downsides:

 - work well to look at more than 2 words with a single feature)

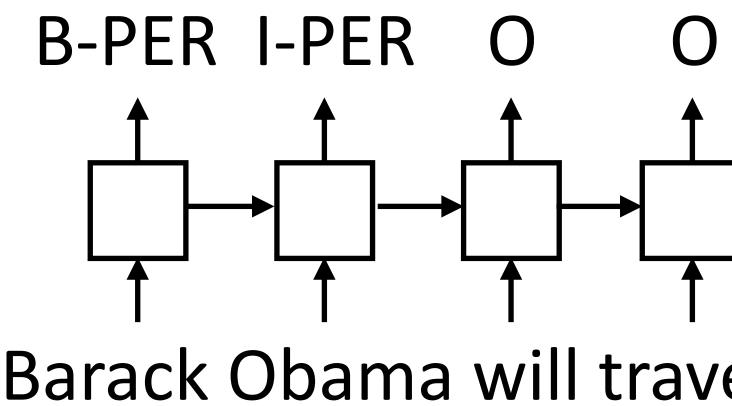
Lexical features mean that words need to be seen in the training data

Linear model can't capture feature conjunctions as effectively (doesn't

LSTMs for NER

I-PER **B-PER**

PERSON



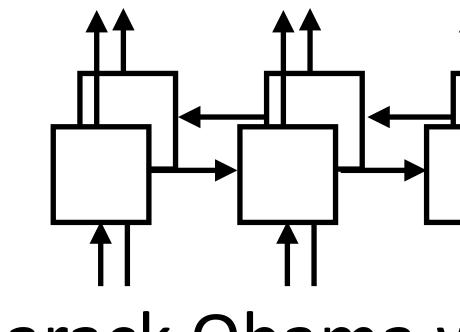
- Transducer (LM-like model)
- What are the strengths and weaknesses of this model compared to CRFs?

- O O B-LOC O O B-ORG 0 \mathbf{O} **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG
 - **B-LOC** 0
 - Barack Obama will travel to Hangzhou

LSTMs for NER

I-PER **B-PER**

PERSON



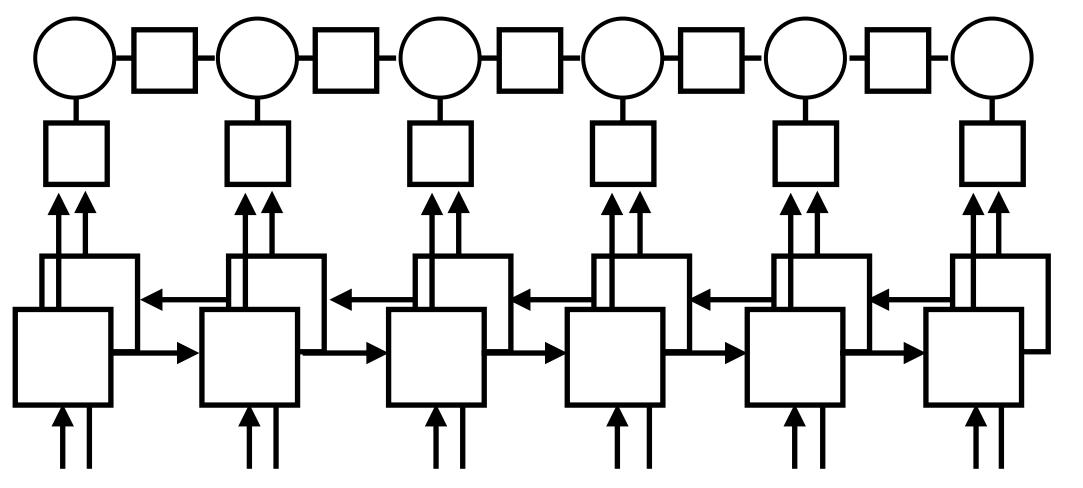
- Bidirectional transducer model
- What are the strengths and weaknesses of this model compared to CRFs?

- O O O B-LOC O O B-ORG O 0 **Barack Obama** will travel to Hangzhou today for the G20 meeting. LOC ORG B-PER I-PER O O B-LOC
 - Barack Obama will travel to Hangzhou

Neural CRFs

B-PER I-PER

PERSON



Neural CRFs: bidirectional LSTMs (or some NN) compute emission potentials, capture structural constraints in transition potentials

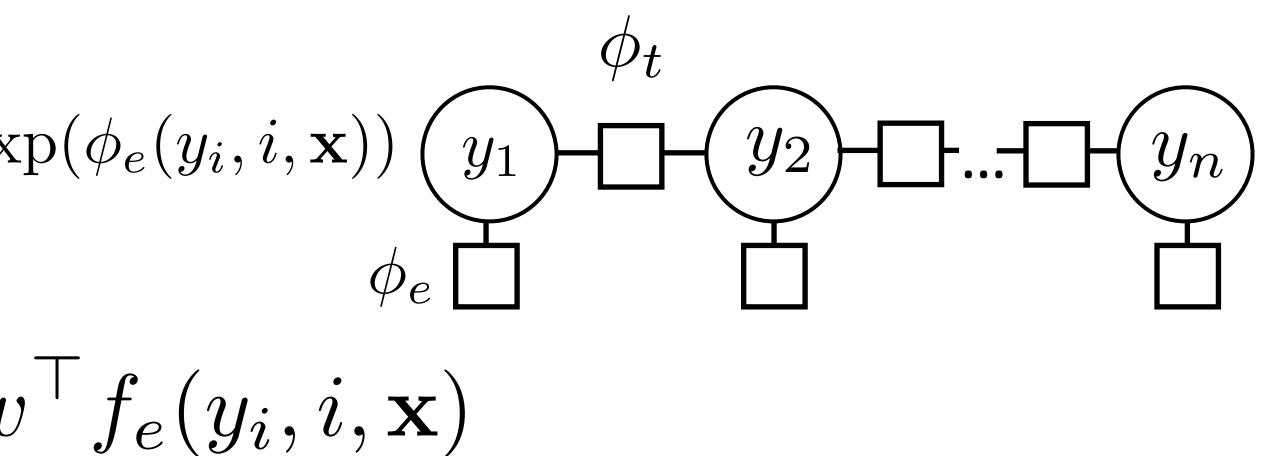
- O O B-LOC O O B-ORG O 0 **Barack Obama** will travel to Hangzhou today for the G20 meeting.
 - LOC ORG

- Barack Obama will travel to Hangzhou

Neural CRFs

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^\top f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{y_i}^{\top} f(i, \mathbf{x})$ W is a num_tags x len(f) matrix
- f(i, x) could be the output of a feedforward neural network looking at the words around position *i*, or the *i*th output of an LSTM, ...
- Neural network computes unnormalized potentials that are consumed and "normalized" by a structured model
- Inference: compute *f*, use Viterbi

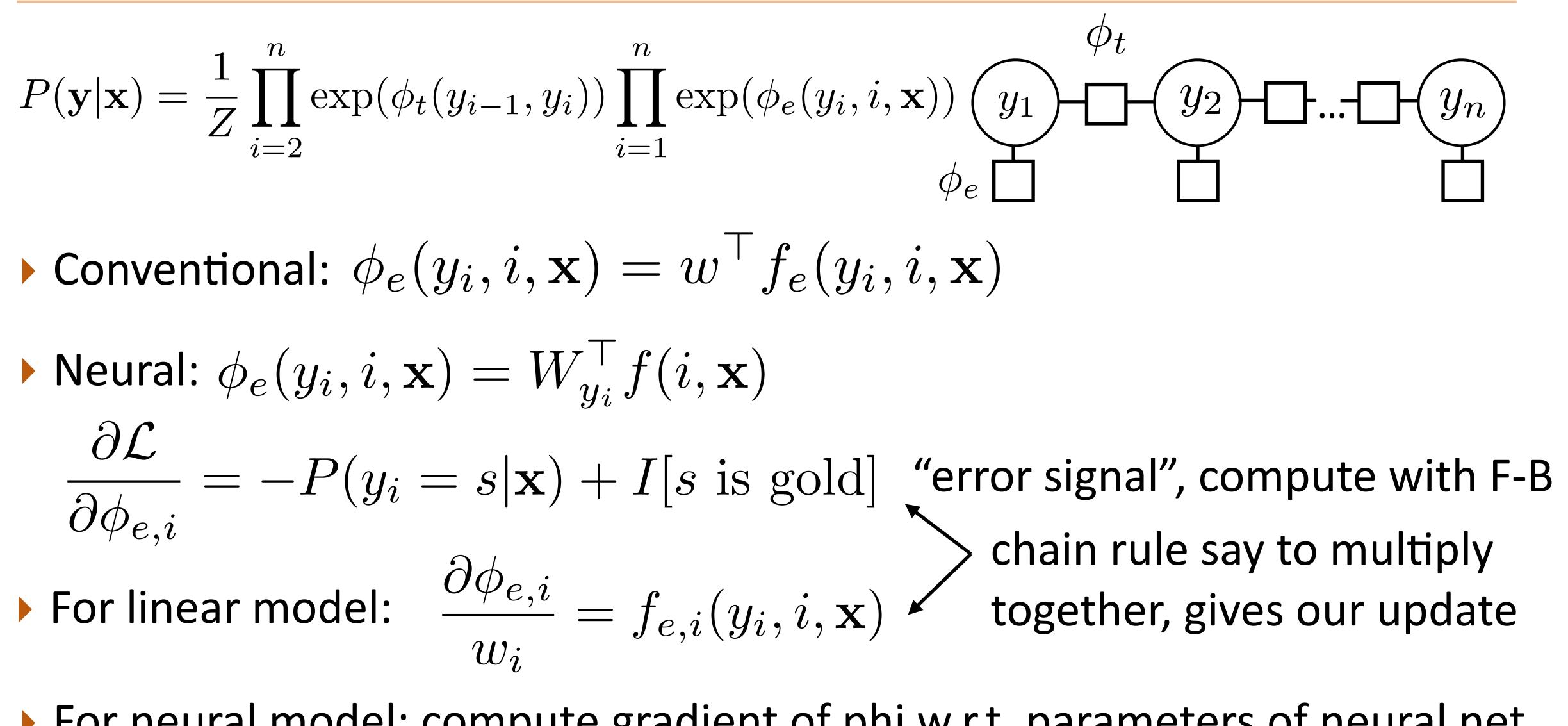


Computing Gradients

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{u_i}^{\top} f(i, \mathbf{x})$

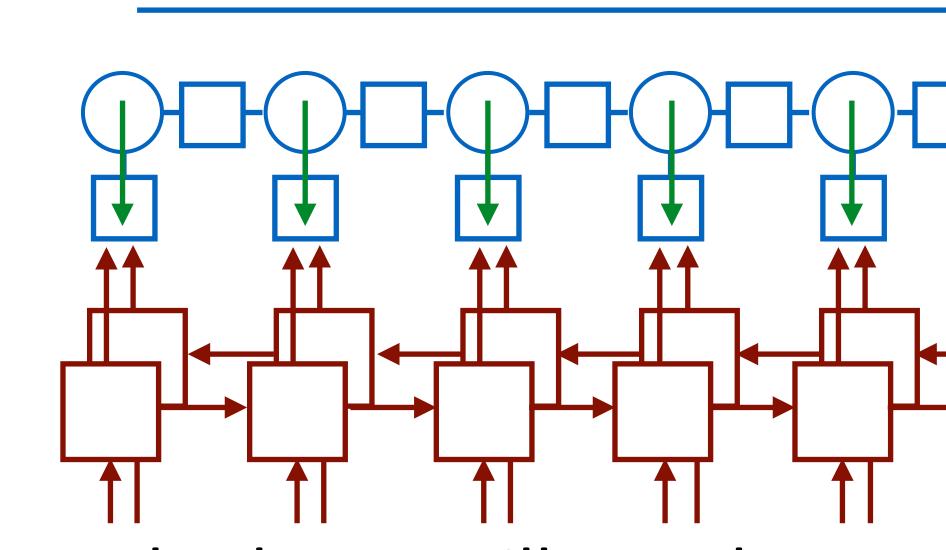
For neural model: compute gradient of phi w.r.t. parameters of neural net



Neural CRFs

B-LOC O O O B-ORG Ο I-PER 0 0 LOC PERSON ORG

B-PER Barack Obama will travel to **Hangzhou** today for the **G20** meeting.



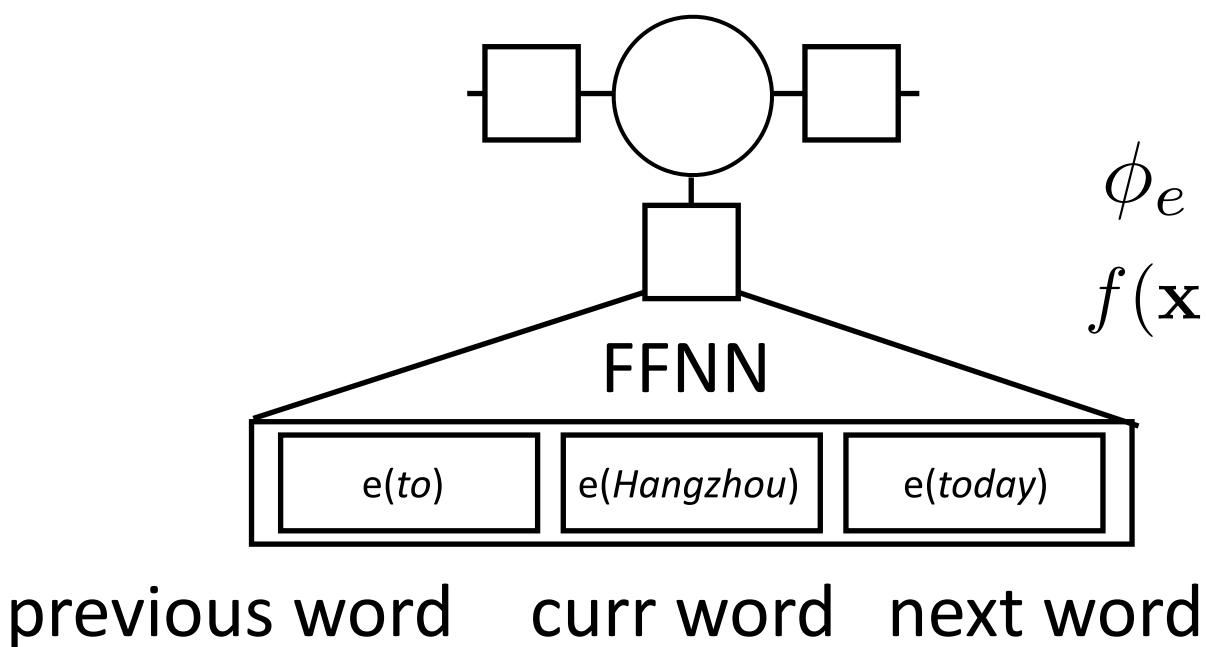
Barack Obama will travel to Hangzhou

2) Run forward-backward 3) Compute error signal 1) Compute f(x) 4) Backprop (no knowledge of CRF structure required)

FFNN Neural CRF for NER

I-PER **B-PER**

PERSON



to **Hangzhou** today

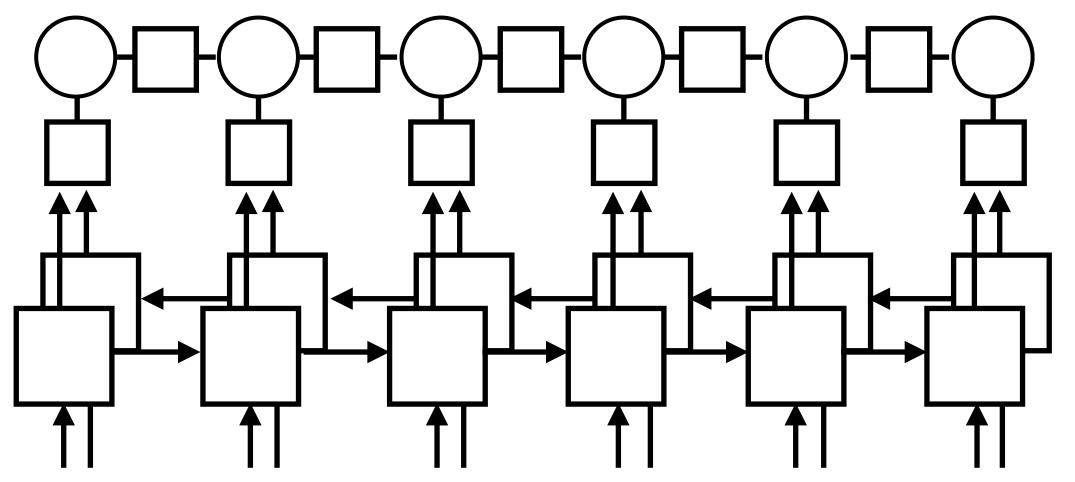
O O B-LOC O O B-ORG 0 **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG

 $\phi_e = Wg(Vf(\mathbf{x}, i))$ $f(\mathbf{x}, i) = [\operatorname{emb}(\mathbf{x}_{i-1}), \operatorname{emb}(\mathbf{x}_i), \operatorname{emb}(\mathbf{x}_{i+1})]$

LSTM Neural CRFs

B-PER I-PER O O O B-LOC O O B-ORG O

PERSON



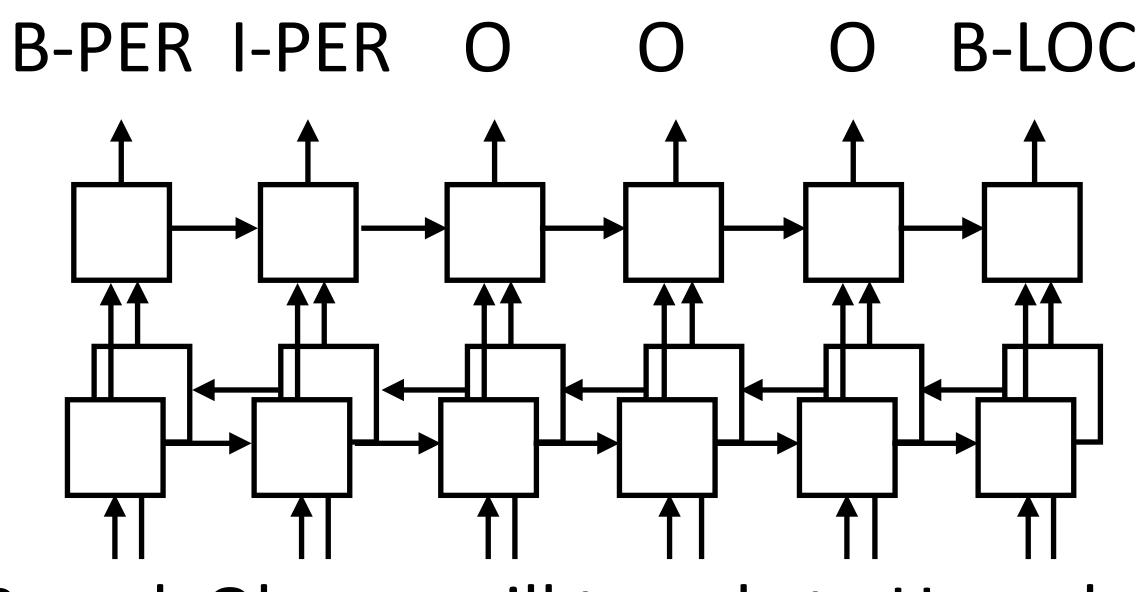
Bidirectional LSTMs compute emission (or transition) potentials

- 0 **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting.
 - LOC ORG

- Barack Obama will travel to Hangzhou

LSTMs for NER

PERSON



Barack Obama will travel to Hangzhou

How does this compare to neural CRF?

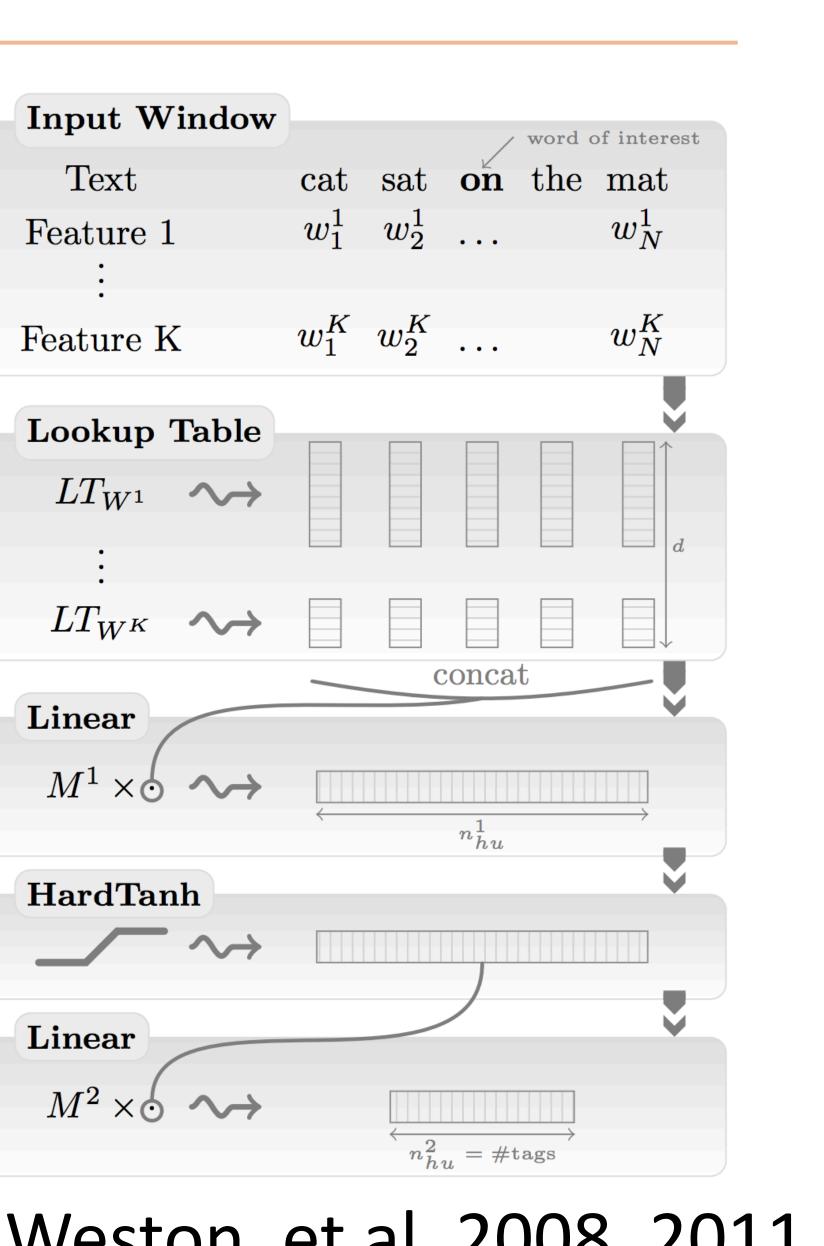
B-PER I-PER O O O B-LOC O O B-ORG O O **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG

"NLP (Almost) From Scratch"

Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99
NN+WLL+LM1	97.05	91.91	85.68	58.18
NN+SLL+LM1	97.10	93.65	87.58	73.84
NN+WLL+LM2	97.14	92.04	86.96	58.34
NN+SLL+LM2	97.20	93.63	88.67	74.15

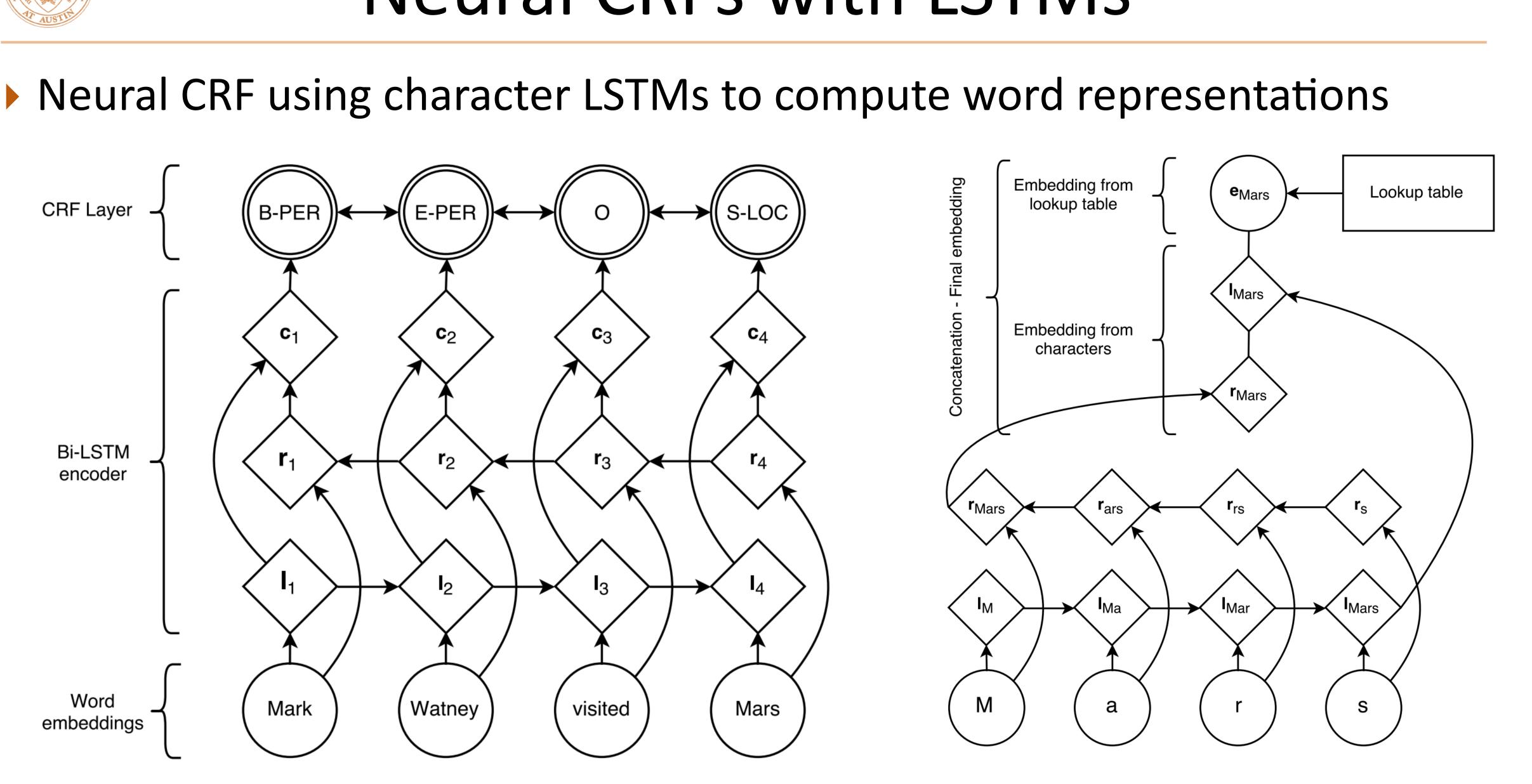
WLL: independent classification; SLL: neural CRF

LM2: word vectors learned from a precursor to word2vec/GloVe, trained for 2 weeks (!) on Wikipedia



Collobert, Weston, et al. 2008, 2011

Neural CRFs with LSTMs



Chiu and Nichols (2015), Lample et al. (2016)

Neural CRFs with LSTMs

- Chiu+Nichols: character CNNs instead of LSTMs
- Lin/Passos/Luo: use external resources like Wikipedia
- LSTM-CRF captures the important aspects of NER: word context (LSTM), sub-word features (character LSTMs), outside knowledge (word embeddings)

	39.59 33.78 90.90 90.10
$I in and W_{11} (2000) \qquad \qquad$	90.90
Lin and Wu (2009) 8	
Lin and Wu (2009)* 9)0 10
Huang et al. (2015)* 9	
Passos et al. (2014) 9	90.05
Passos et al. (2014)* 9	90.90
Luo et al. (2015)* + gaz 8	89.9
Luo et al. $(2015)^* + gaz + linking$	91.2
Chiu and Nichols (2015) 9	90.69
Chiu and Nichols (2015)* 9	90.77
LSTM-CRF (no char) 9	90.20
LSTM-CRF 9	0.94

Chiu and Nichols (2015), Lample et al. (2016)

- Explanation methods: looking at weights, LIME, gradient-based
- All kinds of NNs can be integrated into CRFs for structured inference. Can be applied to NER, other tagging, parsing, ...
- This concludes the ML/DL-heavy portion of the course. Starting Tuesday: syntax, then semantics