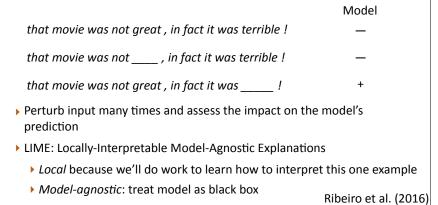
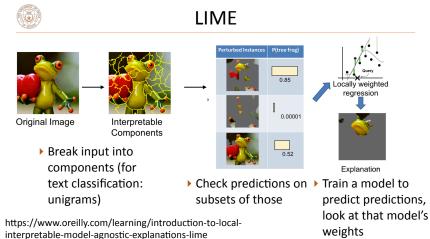


	What is an Explanation?			
	 Given a data instance, identify properties of the input/model that led to a particular decision being made 			
	the movie was great features = (I[great], I[the])			
Explaining NNs	Suppose weight = (+5, +0), decision = +. what's the explanation?			
	Suppose weight = (+5, +3), what's the explanation?			
	Suppose weight = (+0.1, +5), what's the explanation?			
	Explanation != "what a human would do". So any analysis of explanations has to intrinsically be about our model			

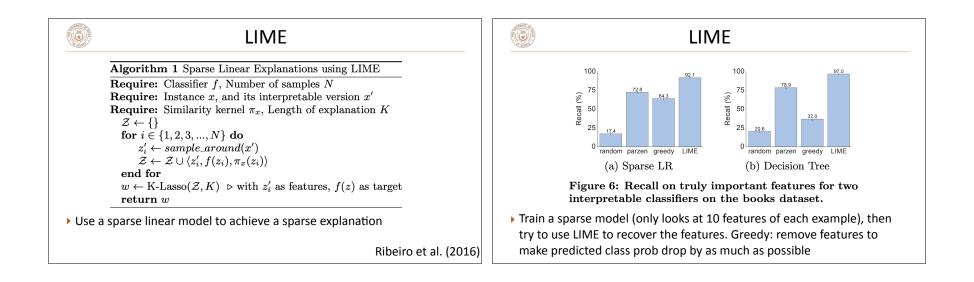
Idea 1: Looking at Weights

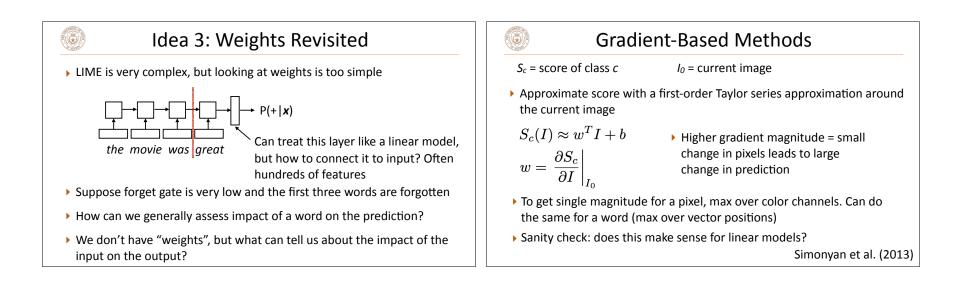
Is the maximum weight always right?

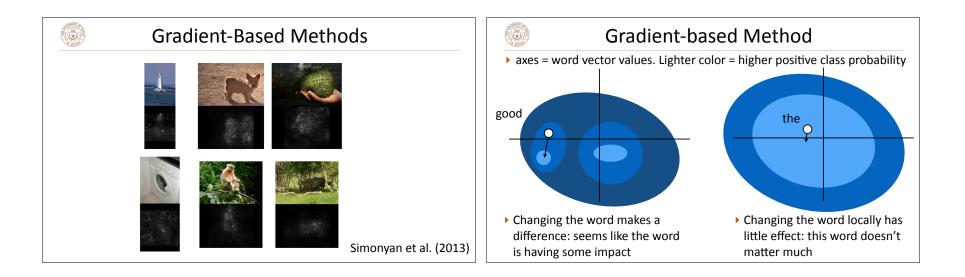

۲


that movie was not great , in fact it was terrible !

- Feats = unigrams and bigrams w(not great) = -5, w(great) = +5, w(terrible) = -3
- Classified as negative; what's the explanation?
- not great and great cancel, don't really contribute to the classification decision. Correlated features make explanations confusing
- How can we define this? Deleting *great* would probably have little effect on the classification score


Idea 2: Counterfactuals


۲

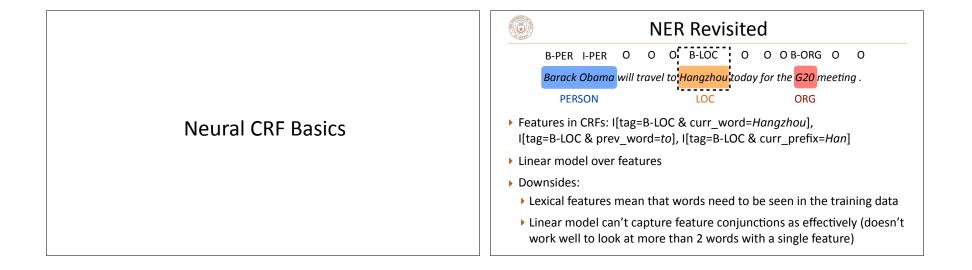


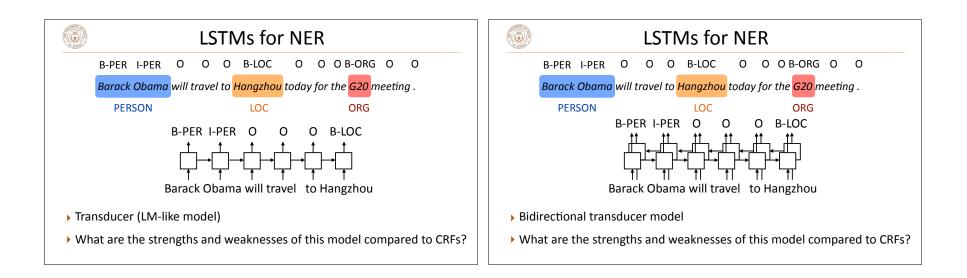
۲		LIME
• Brea $x \in$	k down input into many sr $\mathbb{R}^d o x' \in \{0,1\}^{d'}$	mall pieces so the explanation is interpretable
	v samples z' by perturbing pute f(z) on that	x', then reconstruct z from z' and
	learn a model to predict f e as the explanation for th	(z) based on z'. This model's weights will e decision
why it's +		 If z' is very coarse, can interpret but can't learn a good model of the boundary. If z' is too fine-grained, can interpret but not predict (e.g., z' = z)
-		Ribeiro et al. (2016

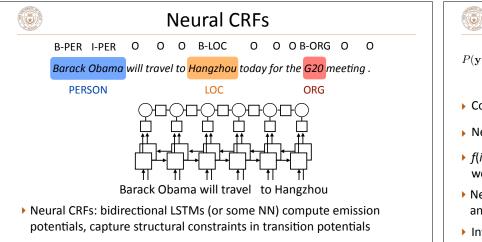
۲

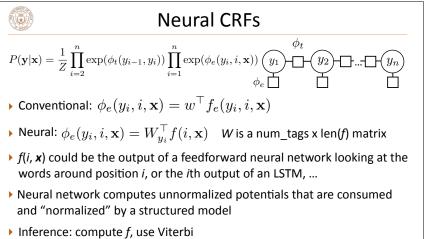
random LIME-500 LIME-1000	LR 0.8617 0.4394	MLP 0.8880	LR	MLP
LIME-500			0.6586	
	0 4 3 9 4		0.0560	0.6843
I IME 1000		0.5330	0.1747	0.1973
	0.3098	0.4164	0.0811	0.1034
LIME-1500	0.2607	0.3566	0.0613	0.0800
DELIVED BOOD				0.0743
				0.0664
	0.1595		0.0449	0.0644
saliency	-	0.2228	-	0.0639
change the pred	iction (th	e switchir	1g point).	
from LIME				
	LIME-2000 LIME-5000 omission saliency Table 3: The % change the pred	LIME-2000 0.2336 LIME-5000 0.1895 omission 0.1595 Table 3: The % of word change the prediction (the	LIME-2000 0.2336 0.3235 LIME-5000 0.1895 0.2589 omission saliency 0.1595 0.2626 Table 3: The % of words that nechange the prediction (the switching) 0.1000	LIME-2000 0.2336 0.3235 0.0547 LIME-5000 0.1895 0.2589 0.0474 omission 0.1595 0.2626 0.0449 saliency - 0.2228 - Table 3: The % of words that needs to be change the prediction (the switching point). - -

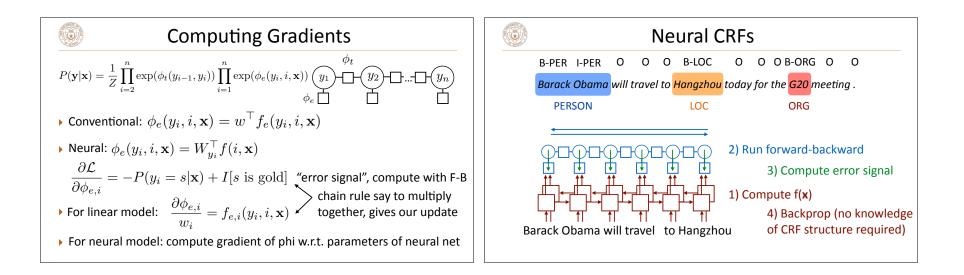
Explaining Sequence Models

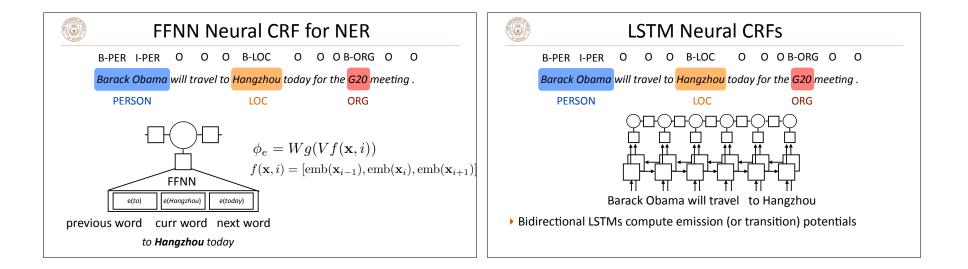

These models might work well for bag-of-words models, but what about other tasks?


I went to the store => Je suis allé au magasin


- I _____ to the store => ???
- Translation system might totally break down, need to stay on the data manifold
- Sample similar datapoints from a variational autoencoder (VAE), more complex approach that requires another model


Alvarez-Melis and Jaakkola (2019)


Idea 3: Probing			Takeaways		
Train a model for task X and learn to predict tas	sk Y		Looking at weights is generally hard for neural networks		
 E.g.: take ELMo representations, freeze them, then try to predict POS representations with just a softmax layer 	Model Collobert et al. (2011) Ma and Hovy (2016) Ling et al. (2015) CoVe, First Layer CoVe, Second Layer biLM, First Layer biLM, Second Layer	Acc. 97.3 97.6 97.8 93.3 92.8 97.3 96.8	 LIME is a good method for generating interpretable explanations, but not always easy to get right Gradient-based techniques can provide explanations, but these aren't perfect. Very "local" and don't consider what happens if a word changes to a different word 		
 Doesn't "explain" a prediction but can illuminat aren't able to capture 	te what models are	and	 Probing tasks can tell you generally what your network might be doing but are hard to interpret 		



With the second seco						
Approach	POS (PWA)	CHUNK (F1)	NER (F1)	SRL (F1)	Input Window Text Feature 1	$\begin{array}{ccc} & & & \\ {\rm cat} & {\rm sat} & {\rm on} & {\rm the} & {\rm mat} \\ w_1^1 & w_2^1 & \ldots & w_N^1 \end{array}$
Benchmark Systems	97.24	94.29	89.31	77.92	Feature K	$w_1^K \ w_2^K \ \dots \ w_N^K$
NN+WLL NN+SLL	96.31 96.37	89.13 90.33	79.53 81.47	55.40 70.99	Lookup Table $LT_{W^1} \longrightarrow$	
NN+WLL+LM1	97.05	91.91	85.68	58.18	:	d
NN+SLL+LM1	97.10	93.65	87.58	73.84	$LT_{W^{K}} \longrightarrow$	
NN+WLL+LM2 NN+SLL+LM2	97.14 97.20	92.04 93.63	86.96 88.67	58.34 74.15	$\begin{array}{c} \text{Linear} \\ M^1 \times \odot \\ \end{array} $	concat
WLL: independen	WLL: independent classification; SLL: neural CRF				$\operatorname{HardTanh}_{-\!$	*****
	LM2: word vectors learned from a precursor			Linear		
to word2vec/Glo	/e, trair	ned for 2	weeks	(!) on	$M^2 \times \odot \longrightarrow$	$n_{hu}^2 = \#$ tags
Wikipedia				Collobert	, Weston,	et al. 2008, 2011

Neural CRFs with LSTMs	Neural CRFs	s with LSTMs	
• Neural CRF using character LSTMs to compute word representations CRF Layer GRF Layer	 Chiu+Nichols: character CNNs instead of LSTMs Lin/Passos/Luo: use external resources like Wikipedia LSTM-CRF captures the important aspects of NER: word context (LSTM), sub-word features (character LSTMs), outside knowledge (word embeddings) 	Model Collobert et al. (2011)* Lin and Wu (2009) Lin and Wu (2009)* Huang et al. (2015)* Passos et al. (2014) Passos et al. (2014)* Luo et al. (2015)* + gaz Luo et al. (2015)* + gaz + linking Chiu and Nichols (2015) Chiu and Nichols (2015)* LSTM-CRF (no char) LSTM-CRF	$\begin{array}{ c c c c c c c c c c c c $
Chiu and Nichols (2015), Lample et al. (2016)		Chiu and Nichols (2015), Lample	et al. (2016)

Takeaways	
Explanation methods: looking at weights, LIME, gradient-based	
 All kinds of NNs can be integrated into CRFs for structured inference. be applied to NER, other tagging, parsing, 	Can
 This concludes the ML/DL-heavy portion of the course. Starting Tuesc syntax, then semantics 	ay: