CS388: Natural Language Processing

Lecture 11: Syntax I

credit: Imgflip

Some slides adapted from Dan Klein, UC Berkeley

Administrivia

- Mini 2 due Tuesday
- ▶ Project 1 back tomorrow
- ▶ Final project spec posted

Final Project

- ▶ Done in pairs or alone
- ▶ Compute: allocation on TACC (Maverick2). 4 1080 Ti / 2 V100 / 2 P100 per machine
- ▶ Topic: see spec for suggestions
- ▶ Proposal due October 15, in-class presentations December 3/5, final report due December 13

This Lecture

- ▶ Constituency formalism
- ▶ Context-free grammars and the CKY algorithm
- ▶ Refining grammars
- Discriminative parsers

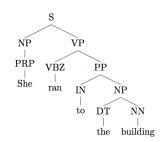
Constituency

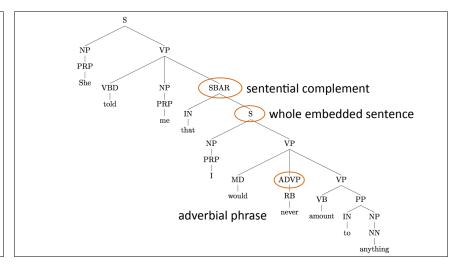
Syntax

- ▶ Study of word order and how words form sentences
- ▶ Why do we care about syntax?
 - ▶ Multiple interpretations of words (noun or verb?)
 - ▶ Recognize verb-argument structures (who is doing what to whom?)
 - ▶ Higher level of abstraction beyond words: some languages are SVO, some are VSO, some are SOV, parsing can canonicalize

Constituency Parsing

- ▶ Tree-structured syntactic analyses of sentences
- ► Common things: noun phrases, verb phrases, prepositional phrases
- ▶ Bottom layer is POS tags
- Examples will be in English. Constituency makes sense for a lot of languages but not all

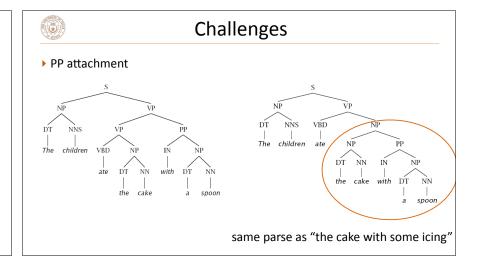




Constituency Parsing

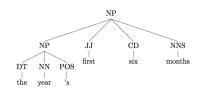
The rat the cat chased squeaked

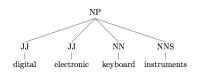
I raced to Indianapolis, unimpeded by traffic



Challenges

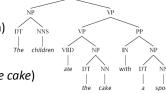
▶ NP internal structure: tags + depth of analysis





Constituency

- ▶ How do we know what the constituents are?
- ▶ Constituency tests:
 - ▶ Substitution by *proform* (e.g., pronoun)
 - ▶ Clefting (It was with a spoon that...)
 - Answer ellipsis (What did they eat? the cake) (How? with a spoon)



▶ Sometimes constituency is not clear, e.g., coordination: she went to and bought food at the store

Context-Free Grammars, CKY

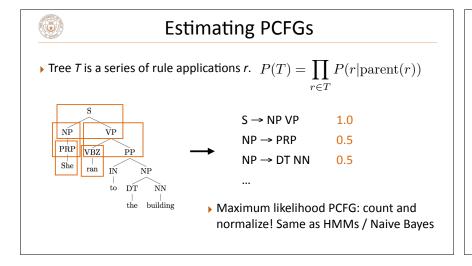
CFGs and PCFGs

Grammar (CFG)

$ROOT \rightarrow S$	$1.0 \text{ NP} \rightarrow \text{NP PP}$	0.3	$NN \rightarrow interest$	1.0
$S \to NPVP$	1.0 VP \rightarrow VBP NP	0.7	NNS → raises	1.0
$NP \rightarrow DT NN$	$0.2 \text{ VP} \rightarrow \text{VBP NP PP}$	0.3	$VBP \to interest$	1.0
NP → NN NNS	$0.5 \text{ PP} \rightarrow \text{IN NP}$	1.0	VBZ → raises	1.0

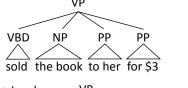
Lexicon

- ▶ Context-free grammar: symbols which rewrite as one or more symbols
- ▶ Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words)
- ▶ CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- ▶ PCFG: probabilities associated with rewrites, normalize by source symbol



Binarization

▶ To parse efficiently, we need our PCFGs to be at most binary (not CNF)



 $P(VP \rightarrow VBD NP PP PP) = 0.2$

 $P(VP \rightarrow VBZ PP) = 0.1$

VBD VP-[NP PP PP]

NP VP-[PP PP]

VBD VP

NP VP

Binarization

VP ▶ Lossless: VBD VP-[NP PP PP] VP-[PP PP] NP

 $P(VP \rightarrow VBD VP-[NP PP PP]) = 0.2$ $P(VP-[NP PP PP] \rightarrow NP VP-[PP PP]) = 1.0$

 $P(VP-[PP PP] \rightarrow PP PP) = 1.0$

▶ Deterministic symbols make this the same as before



 $P(VP \rightarrow VBD VP) = 0.2$

 $P(VP \rightarrow NP VP) = 0.03$

 $P(VP \rightarrow PP PP) = 0.001$

Makes different independent assumptions, not the same PCFG

VP

NP

 W_2

W3 S[0,4] => NP[0,2] VP[2,4]

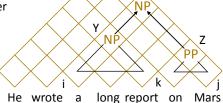
T[i,j,X]

CKY

Find argmax P(T|x) = argmax P(T, x)

▶ Dynamic programming: chart maintains the best way of building symbol X over span (i, j)

▶ CKY = Viterbi, there is also an algorithm called insideoutside = forward-backward



Cocke-Kasami-Younger

CKY

▶ Chart: T[i,j,X] = best score

▶ Base: $T[i,i+1,X] = log P(X \rightarrow w_i)$

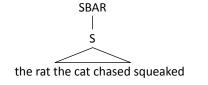
Loop over all split points k, apply rules X -> Y Z to build X in every possible way

• Recurrence:

 $T[i,j,X] = \max_{k} \max_{r: \ X \rightarrow X1 \ X2} T[i,k,X1] + T[k,j,X2] + log \ P(X \rightarrow X1 \ X2)$

▶ Runtime: O(n³G) G = grammar constant

Unary Rules

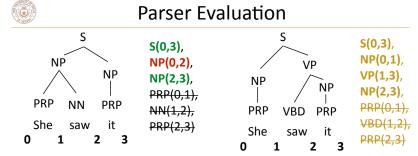


NP NNS mice

▶ Unary productions in treebank need to be dealt with by parsers

▶ Binary trees over n words have at most n-1 nodes, but you can have unlimited numbers of nodes with unaries (S \rightarrow SBAR \rightarrow NP \rightarrow S \rightarrow ...)

In practice: enforce at most one unary over each span, modify CKY accordingly



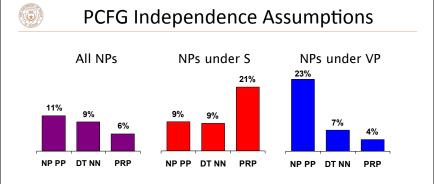
- ▶ Precision: number of correct brackets / num pred brackets = 2/3
- Recall: number of correct brackets / num of gold brackets = 2/4
- ▶ F1: harmonic mean of precision and recall = $(1/2 * ((2/4)^{-1} + (2/3)^{-1}))^{-1}$ = 0.57

Results

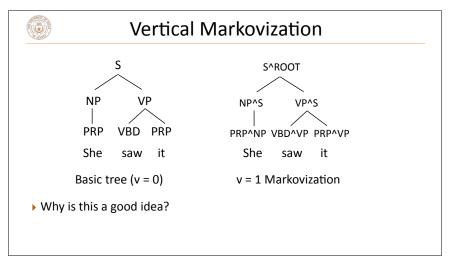
- > Standard dataset for English: Penn Treebank (Marcus et al., 1993)
 - ▶ Evaluation: F1 over labeled constituents of the sentence
- ▶ Vanilla PCFG: ~75 F1
- ▶ Best PCFGs for English: ~90 F1
- > SOTA (discriminative models): 95 F1
- Other languages: results vary widely depending on annotation + complexity of the grammar

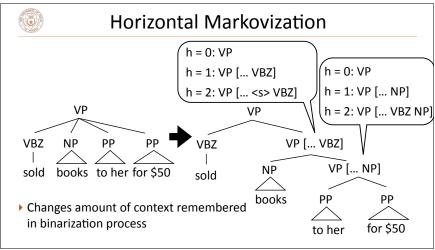
Klein and Manning (2003)

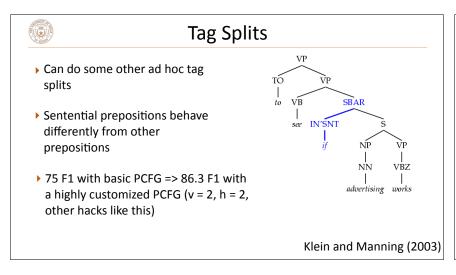
Refining Generative Grammars

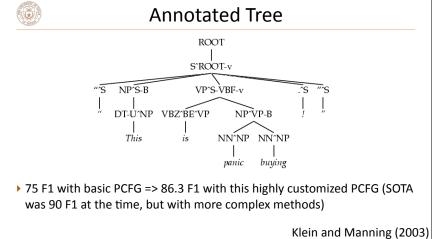


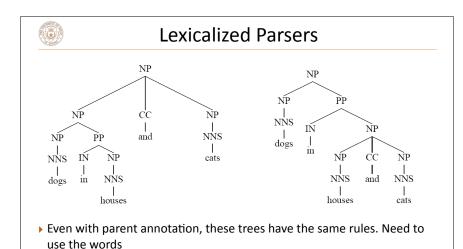
- ▶ Language is not context-free: NPs in different contexts rewrite differently
- ▶ Can we make the grammar "less context-free"?

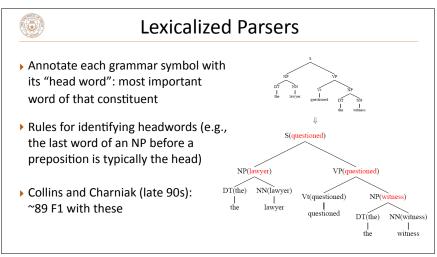




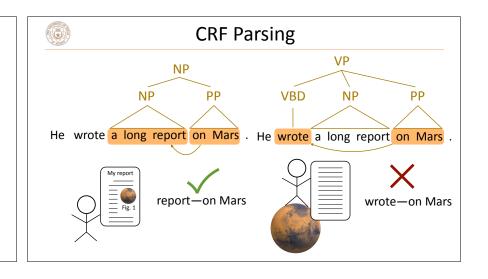


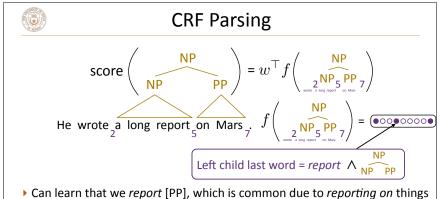






Discriminative Parsers

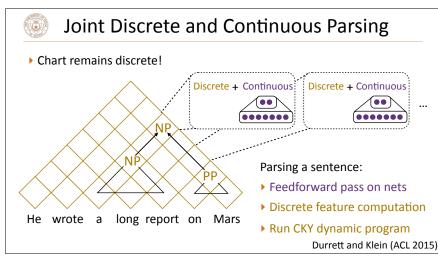


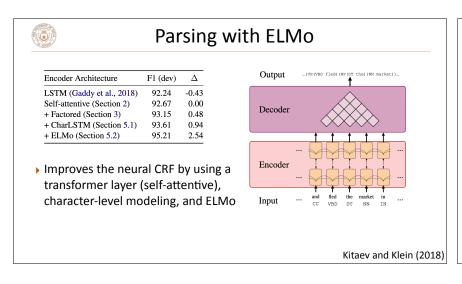


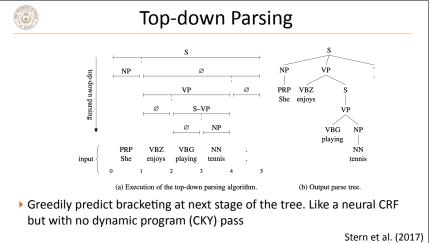
▶ Can "neuralize" this as well like neural CRFs for NER

Taskar et al. (2004)

Hall, Durrett, and Klein (2014) Durrett and Klein (2015)







Takeaways

- ▶ PCFGs estimated generatively can perform well if sufficiently engineered
- ▶ Neural CRFs work well for constituency parsing
- Next time: revisit lexicalized parsing as dependency parsing