CS388: Natural Language Processing

Lecture 12: Dependency I

Greg Durrett TEXAS THE UNIVERSITY OF TEXAS AT A LASTIN

Administrivia

- Project 1 graded, discussion at end of lecture
- Mini 2 due tonight

Final project proposals due next Tuesday

- Dependency vs. Constituency: PP Attachment
- Constituency: several rule productions need to change

- Dependency parsers are easier to build: no "grammar engineering", no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually

١	Projectivi	ty			
Number of trees produceal	ole under differ	ent formalisms			
	Arabic	Czech	Danish		
1-Endpoint-Crossing	1457 (99.8)	71810 (98.8)	5144 (99.1)		
Well-nested, block degree 2	1458 (99.9)	72321 (99.5)	5175 (99.7)		
Gap-Minding	1394 (95.5)	70695 (97.2)	4985 (96.1)	Graph-Bas	Graph-Based Parsing
Projective	1297 (88.8)	55872 (76.8)	4379 (84.4)		0
Sentences	1460	72703	5190		
Many trees in other language	ges are nonproj	ective			
Some other formalisms (tha Endpoint-Crossing	t are harder to	parse in), most	useful one is 1-		
			Pitler et al. (2013)		

4 = report

Mars

5 = on

4

long report on

4

5

Building Systems

- Can implement decoding and marginal computation using Eisner's algorithm to max/sum over projective trees
- Conceptually the same as inference/learning for sequential CRFs for NER, can also use margin-based methods

Evaluating Dependency Parsing

- UAS: unlabeled attachment score. Accuracy of choosing each word's parent (n decisions per sentence)
- LAS: additionally consider label for each edge
- ▶ Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- ▶ Higher-order features from Koo parser: 93 UAS
- Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

Slightly stronger results	Madal	English		Chinese	
	Widden	UAS	LAS	UAS	LAS
than Dozat + Manning	Chen and Manning (2014)	91.8	89.6	83.9	82.4
significantly better results on Chinese	Andor et al. (2016)	94.61	92.79	-	-
	Zhang et al. (2016)	93.42	91.29	87.65	86.17
	Cheng et al. (2016)	94.10	91.49	88.1	85.7
	Kuncoro et al. (2016)	94.26	92.06	88.87	87.30
	Ma and Hovy (2017)	94.88	92.98	89.05	87.74
	Dozat and Manning (2017)	95.74	94.08	89.30	88.23
	Li et al. (2018a)	94.11	92.08	88.78	86.23
	Ma et al. (2018)	95.87	94.19	90.59	89.29
	Our (Division)	94.32	93.09	89.14	87.31
	Our (Joint)	96.09	94.68	91.21	89.15
	Our (Division*)	-	-	91.69	90.54
	Our (Joint*)	-	-	93.24	91.95

Takeaways

- Dependency formalism provides an alternative to constituency, particularly useful in how portable it is across languages
- Dependency parsing also has efficient dynamic programs for inference
- CRFs + neural CRFs (again) work well

P	Proj 1 Results					
Jiaming Chen: 82.46 F1	 WordPair features, larger window for POS tag extraction ([-2, 2]) 					
Po-Yi Chen: 82.02 F1	 Also larger window and data shuffling in between epochs 					
Ting-Yu Yen: 81.57 F1	 Unregularized Adagrad worked best 					
Prakhar Singh: 81.54 F1	 City gazetteer, generic date recognizer 					
All others <81						