CS388: Natural Language Processing

Lecture 13:
Dependency ||

Greg Durrett

Recall: Dependencies

» Dependency syntax: syntactic structure is defined by dependencies
» Head (parent, governor) connected to dependent (child, modifier)
» Each word has exactly one parent except for the ROOT symbol
» Dependencies must form a directed acyclic graph

7N

DT NN VBD TO DT NN
the dog ran to the house

ROOT

Recall: Projectivity

» Projective <-> no “crossing” arcs

VPN A

dogs in houses and cats the dog ran to the house
» Crossing arcs: PUNC
TMP
ROOT as
NP
NMOD SBJ //—\\ thg\\
root hearmg IS scheduled on the ISsue

today

credit: Language Log

Recall: Eisner’s Algorithm

» Left and right children are built independently, heads are edges of spans

» Complete item: all children are attached, head is at the “tall end”
» Incomplete item: arc from “tall end” to “short end”, may still expect children

ROOT
the dog ran to the house

Recall: Biaffine Neural Parsing

» Neural CRFs for dependency parsing: let ¢ = LSTM embedding of i, p =
LSTM embedding of parent(i). score(i, parent(i), X) = pTUc
score(tree) = sum of edge scores

H (arc-dep) D1 U(arc) FH (arc-head) q(arc)
T
. . 009 |® OO0 0000
(num words x hidden size) |eee® 00| _ |@eeee| (num words X
@09 O O 4 @8O
0000 00 eoee NUM words)
ML P: h(arc—dep), h(arc—head) 000 [e0e 000 [0ee
’ ’ N/ N/
BiLSTM: r; C000 0000 < 0080 0009 <« --- 0000 0000 <« 0000 0000
[[
Embeddings: x; 07’0 00\0 .f.‘ O?

root ROOT Kim NNP
LSTM looks at words and POS Dozat and Manning (2017)

Evaluating Dependency Parsing

» UAS: unlabeled attachment score. Accuracy of choosing each word’s
parent (n decisions per sentence)

» LAS: additionally consider label for each edge

» Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
» Higher-order features from Koo parser: 93 UAS

» Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

HPSG

S
» Head-driven phrase structure b b
| N

srammar (HPSG): very complex e vz N N mm

grammar formalism which T EY \Np NNs ROOT NNPVBZ NNP NS

Sandy books Kim gives Sandy books
annotates large feature structures (a) Constituent (® Dependency
over tree

[SYNSEMLOC |CAT [;$$£A4 _ >:|] (=S[fin])
» Very little work on HPSG in NLP i sowsewoccr] A0 vy
since no real treebank exists " —c
swnseuocar| SO sl || sy o

gives

(c) HPSG

Pollard and Sag (1994), Zhou and Zhao (2019)

- - N
Federal { \
NNP E— |
Ct e < |
ate s
ROOT [HE‘(AlgD)sells] |
9
NNP [Categ<NP >] [Categ <VP>] : |
HEAD Board HEAD sells .
Dependency Score ay (43) o |
R 7=
[NNP NNP NNP VBZ [Categ <NP>] |
Federal Paper Board sells |HEAD products |
\ | 2 3 4 L ol |
C ateg’/’.; f >] NIJ\IS |
—_ HEAD
wood (— — i - [s F)’aPef productsl
NN D, | | t-/ “<_'L\' |
j | NN CC NN |
] paper axgd wg})od I
products [J . - .
S 000 Span Score A Simplified HPSG |
N R 7 . -
Input Token Self-Attention -
npu R tati Scor mng Layer Decoder Layer
cpresentation Layers

» Joint model of constituency and dependency combining ideas from
Dozat + Manning and Stern et al. Zhou and Zhao (2019)

» Slightly stronger results
than Dozat + Manning,

significantly better
results on Chinese

Parsing with “HPSG”

English Chinese

Model UAS LAS | UAS LAS
Chen and Manning (2014) | 91.8 89.6 | 839 824
Andor et al. (2016) 94.61 9279 | _ _
Zhang et al. (2016) 90342 91.29 | 87.65 86.17
Cheng et al. (2016) 04.10 9149 | 88.1 85.7
Kuncoro et al. (2016) 90426 92.06 | 88.87 87.30
Ma and Hovy (2017) 04.88 9298 | 89.05 87.74
Dozat and Manning (2017) | 95.74 94.08 | 89.30 88.23
Lietal. (2018a) 04.11 92.08 | 88.78 86.23
Ma et al. (2018) 05.87 94.19 | 90.59 89.29
Our (Division) 9432 93.09 | 89.14 87.31
Our (Joint) 96.09 94.68 | 91.21 89.15
Our (Division*) - - | 91.69 90.54
Our (Joint*) : : 93.24 91.95

Zhou and Zhao (2019)

This Lecture

» Transition-based (shift-reduce) dependency parsing

» Approximate, greedy inference — fast, but a little bit weird!

Shift-Reduce Parsing

Shift-Reduce Parsing

» Similar to deterministic parsers for compilers

» Also called transition-based parsing

» A tree is built from a sequence of incremental decisions moving
left to right through the sentence

» Stack containing partially-built tree, buffer containing rest of
sentence

» Shifts consume the buffer, reduces build a tree on the stack

Shift-Reduce Parsing

ROOT
A/K\/\

| ate some spaghetti bolognese
» Initial state: Stack: [ROOT]| Buffer: [I ate some spaghetti bologhese]

» Shift: top of buffer -> top of stack
» Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognhese]

» Shift 2: Stack: [ROOT | ate] Buffer: [some spaghetti bolognhese]

Shift-Reduce Parsing

ROOT
A/K\/\

| ate some spaghetti bolognese

» State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

» Left-arc (reduce): Let o denote the stack, O‘|w_1 = stack ending in w-1

» “Pop two elements, add an arc, put them back on the stack”
% W_o IS now a child of w_1

» State: Stack: [ROOT ate] Buffer: [some spaghetti bolognhese]

v
|

Arc-Standard Parsing

ROOT
A/K\/\

| ate some spaghetti bolognese

» Start: stack contains [ROOT], buffer contains [l ate some spaghetti bologhese]

» Arc-standard system: three operations
» Shift: top of buffer -> top of stack

» Left-Arc: O'|w_2, W_1|— O'|w_1 Ww_o isnow a child of w_1
» Right-Arc U|w_2, w_1| — J|w_2 , W_1is now a child of w_»

» End: stack contains [ROOT], buffer is empty |[]

» How many transitions do we need if we have n words in a sentence?

ROOT S top of buffer -> top of stack

N S LA pop two, left arc between them

| ate some spaghetti bolognese
P ° RA pop two, right arc between them

[ROOT] E [l ate some spaghetti bologhese]
[ROOT 1] [ate some spaghetti bolognese]
[ROOT | ate] [some spaghetti bologhese]
[ROOT a;CE] [some spaghetti bolognese]

|

» Could do the left arc later! But no reason to wait
» Can’t attach ROOT <- ate yet even though this is a correct dependency!

ROOT S top of buffer -> top of stack

N S LA pop two, left arc between them

| ate some spaghetti bolognese
P ° RA pop two, right arc between them

[ROOT ate] [some spaghetti bologhese]

v
|

[ROOT ate some spaghetti]

v
|

[ROOT ai(e spaghetti] [bolognese]
v

| some

[bolognese]

[~] [«2]«]

[~]

ROOT S top of buffer -> top of stack

N S LA pop two, left arc between them

| ate some spaghetti bolognese
hes ° - RA pop two, right arc between them

[ROQT ate spaghetti bolognese| [] » Stack consists of all words that are

T sotne IEI still waiting for right children, end
with a bunch of right-arc ops
v v | |
| some bolognese [ROOT]]
[ROOT ate] IEI[] e a}‘i, .
¥ Spaghett | Spfgh\efh
I bolognese <ome Polognese

some

Other Systems

» Arc-eager (Nivre, 2004): lets you add right arcs sooner and keeps
items on stack, separate reduce action that clears out the stack

» Arc-swift (Qi and Manning, 2017): explicitly choose a parent from
what’s on the stack

» Many ways to decompose these, which one works best depends on
the language and features (nonprojective variants too!)

Building Shift-Reduce Parsers

|[ROOT] [l ate some spaghetti bologhese]

» How do we make the right decision in this case?

» Only one legal move (shift)

[ROOT ate some spaghetti] [bolognhese]

v
|

» How do we make the right decision in this case? (all three actions legal)

» Multi-way classification problem: shift, left-arc, or right-arc?

argmaxae{stAaRA}wTf(stack, buffer, a)

Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognese]

v
|

» Features to know this should left-arc?
» One of the harder feature design tasks!

» In this case: the stack tag sequence VBD - DT - NN is pretty informative
— looks like a verb taking a direct object which has a determiner in it

» Things to look at: top words/POS of buffer, top words/POS of stack,
leftmost and rightmost children of top items on the stack

Training a Greedy Model

[ROOT ate some spaghetti] [bolognese]

v
|

argmaxaE{S’LAyRA}wTf(stack, buffer, a)

» Can turn a tree into a decision sequence a by building an oracle
» Train a classifier to predict the right decision using these as training data
» Training data assumes you made correct decisions up to this point

and teaches you to make the correct decision, but what if you
screwed up...

Greedy training

State space

Start state A Gold end state

--

» Greedy: 2n local training examples

» Non-gold states unobserved during training: consider
making bad decisions but don’t condition on bad decisions

Speed Tradeoffs

Parcer Dev Test Speed
UAS LAS| UAS LAS| (sent/s)
Unoptimized S-R standard 89.9 88.7| 89.7 &8.3 51
cager 90.3 89.2| 89.9 88.6 63
. Malt:sp 90.0 88.83| 89.9 88.5| 560
Optimized SR 9 \alteager | 90.1 88.9|90.1 88.7| 535
Graph-based MSTParser | 92.1 90.8 | 92.0 90.5 12
Neural S-R Our parser | 92.2 91.0| 92.0 90.7| 1013

» Many early-2000s constituency parsers were ~5 sentences/sec

» Using S-R used to mean taking a performance hit compared to
graph-based, that’s no longer (quite as) true

Chen and Manning (2014)

Global Decoding

Global Decoding
ROOT
AA_\ [ROOT gave him] [dinner]

| gave him dinner v
|

» Is it a problem that we make decisions greedily?

» Correct: Right-arc, Shift, Right-arc, Right-arc

[ROOT gave] [dinner]
¥
| him

[ROOT gave dinner] || [ROOT gave]]
v X YN

| him | him dinner

Global Decoding: A Cartoon

ROOT
AA_\ [ROOT gave him] [dinner]

| gave him dinner v
|

LA
» Both wrong! Also

[ROOT gave him dinner] [] both probably

7 T RA low scoring!
\tﬁ<

> high
RA [ROOT gave] [dinner] S Correct, hig

AN scoring option

| him

Global Decoding: A Cartoon

ROOT
m [ROOT gave him] [dinner]

| gave him dinner v
|

» Lookahead can help us avoid getting stuck in bad spots

» Global model: maximize sum of scores over all decisions

» Similar to how Viterbi works: we maintain uncertainty over the current
state so that if another one looks more optimal going forward, we can
use that one

Global Shift-Reduce Parsing
ROOT
m [ROOT gave him] [dinner]

| gave him dinner v
|
» Greedy: repeatedly execute » Global:
T
pest <— argmax,w f(s,a) argmaxgy ,w f S, a) Zw f(s;,a;)

S <— @best(s) Si+1 — CLZ'(S@)

» Can we do search exactly? How many states s are there?

» No! Use beam search

Beam Search

» Maintain a beam of k plausible states at the current timestep, expand
each and only keep top k best new ones

» Example: POS

" NNP +0.9

—>

Fed

*IVBN +0.7 T—
> NN +0.3 —=<—

Not expanded

VBZ -2.0 s
| VBD +1.2 4'\“\'5.:1-0 ﬂsz Py

NNS -1.0

DT -5.3

» Maintain priority queue
to efficiently add things

PRP -5.8

raises

——
Not expanded

» Beam size of k, n words, s states, time complexity O(nks log(k))

How good is beam search?

» k=1: greedy search

» Choosing beam size:
» 2 is usually better than 1

» Usually don’t use larger than 50

» Depends on problem structure

Global Shift-Reduce Parsing

[ROOTgave] """" [dlnner] 333 ‘\ ‘ ':.:.::.:.::.:.::.:.:.:.:.:.:.:.:.:.:.:.::.:.::.:::.:::.:::.:::.:::.:::.:::.:::.:.::.:.:::::::::::.'E

Y\

[ROOT gave him]

» Beam search gave us the
lookahead to make the right RA ;
decision D

Global Training

» If using global inference, should train the parser in a global fashion as
well: use structured perceptron / structured SVM

» Model treats an entire derivation as something to featurize

» No algorithm like Viterbi for doing efficient parsing, so use beam search

State-of-the-art Transition-Based
Parsers

Dependency Parsers

» 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
» 2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)

» 2012: Maltparser was SOTA was for transition-based (~90 UAS)

» 2014: Chen and Manning got 92 UAS with transition-based neural
model

» 2016: Improvements to Chen and Manning

State-of-the-art Parsers

AN

Softmax layer:
p = softmax(Wsh)
Hidden layer:
h=Wpa® + Wizt + Wizt + b)?

Z"M‘

N
Y
N

Input layer: [:L’“’,a:t,a:l] _____________ d '\/_//_////_/{/ _E“ _____________
words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ control_ NN ...
nsubj
He_PRP

Chen and Manning (2014)

Parsey IVIcParseface (a.k.a. SyntaxNet)

» Close to state-of-the-art, released by Google publicly

» 94.61 UAS on the Penn Treebank using a global transition-based system
with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)

» Additional data harvested via “tri-training”, form of self-training

» Feedforward neural nets looking at words and POS associated with
words in the stack / those words’ children / words in the buffer

» Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

» Shift-reduce parsers are often playing “catch-up”, hard to really push
the SOTA with shift-reduce because it’s harder to design models

Andor et al. (2016)

Shift-Reduce Constituency

/S\ steps | structural action label action | stack after bracket
NP VP 12 sh(I/PRP) label-NP 0/\1 oNP;
| o 34 sh(do/MD) nolabel 0/\1/\9
PII{P MID V]|3P ? 5-6 sh(like/VBP) nolabel 0/\1/ o/ \3
, 7-8 comb nolabel 0/\1/\3
ol 1do ,like K 9-10 (fsh(eating/VBG) nolabel 0/ N1/ N3/ \y
VBG NP 11-12 /| sh(fish/NN) label-NP 0/\1/\3/ g/ 5 | 4NPs
| | 13-14/| comb label-S-VP | ¢/ 2123/ 5 395, 3VPs5
3 eating NN 15-1 comb label-VP 0/\1/\5 1 VP5
) ﬁlsh 5 17-1 comb label-S 0/ \5 095
(a) gold parse tree (b) static oracle actions

combine with no label for ternary rules

» Can do shift-reduce for constituency as well, reduce operation

builds constituents
Cross and Huang (2016)

Recap

» Shift-reduce parsing can work nearly as well as graph-based

» Arc-standard system for transition-based parsing
» Purely greedy or more “global” approaches

» Next time: semantic parsing

