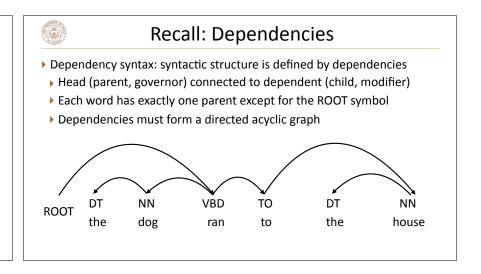
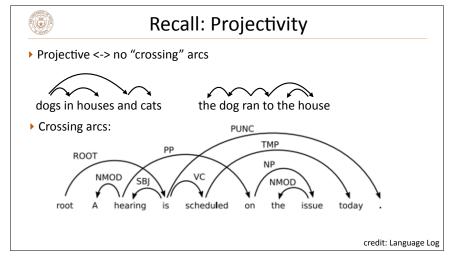
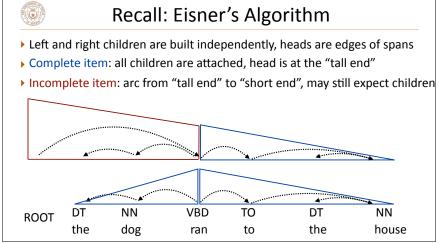
CS388: Natural Language Processing

Lecture 13: Dependency II

Greg Durrett

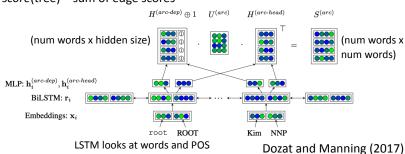






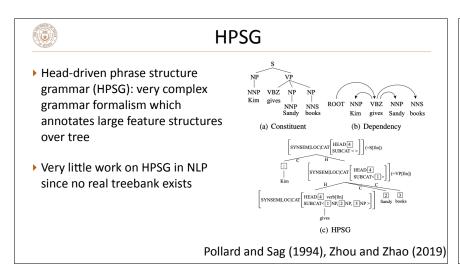
Recall: Biaffine Neural Parsing

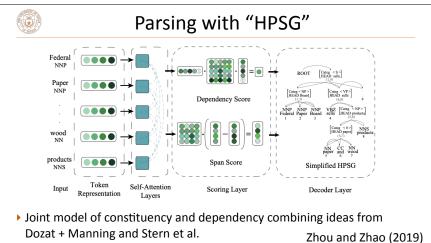
Neural CRFs for dependency parsing: let c = LSTM embedding of i, p = LSTM embedding of parent(i). score(i, parent(i), x) = p^TUc score(tree) = sum of edge scores



Evaluating Dependency Parsing

- ▶ UAS: unlabeled attachment score. Accuracy of choosing each word's parent (*n* decisions per sentence)
- ▶ LAS: additionally consider label for each edge
- ▶ Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- ▶ Higher-order features from Koo parser: 93 UAS
- ▶ Best English results with neural CRFs (Dozat and Manning): 95-96 UAS





Parsing with "HPSG"

▶ Slightly stronger results than Dozat + Manning, significantly better results on Chinese

Model	Eng	glish	Chinese		
Model	UAS	LAS	UAS	LAS	
Chen and Manning (2014)	91.8	89.6	83.9	82.4	
Andor et al. (2016)	94.61	92.79	_	_	
Zhang et al. (2016)	93.42	91.29	87.65	86.17	
Cheng et al. (2016)	94.10	91.49	88.1	85.7	
Kuncoro et al. (2016)	94.26	92.06	88.87	87.30	
Ma and Hovy (2017)	94.88	92.98	89.05	87.74	
Dozat and Manning (2017)	95.74	94.08	89.30	88.23	
Li et al. (2018a)	94.11	92.08	88.78	86.23	
Ma et al. (2018)	95.87	94.19	90.59	89.29	
Our (Division)	94.32	93.09	89.14	87.31	
Our (Joint)	96.09	94.68	91.21	89.15	
Our (Division*)	-	-	91.69	90.54	
Our (Joint*)	-	-	93.24	91.95	

Zhou and Zhao (2019)

This Lecture

- ▶ Transition-based (shift-reduce) dependency parsing
 - ▶ Approximate, greedy inference fast, but a little bit weird!

Shift-Reduce Parsing

Shift-Reduce Parsing

- ▶ Similar to deterministic parsers for compilers
 - ▶ Also called transition-based parsing
- ▶ A tree is built from a sequence of incremental decisions moving left to right through the sentence
- Stack containing partially-built tree, buffer containing rest of sentence
- > Shifts consume the buffer, reduces build a tree on the stack

Shift-Reduce Parsing

ROOT I ate some spaghetti bolognese

- ▶ Initial state: Stack: [ROOT] Buffer: [I ate some spaghetti bolognese]
- ▶ Shift: top of buffer -> top of stack
 - ▶ Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]
 - ▶ Shift 2: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]

Shift-Reduce Parsing

- ▶ State: Stack: [ROOT Late] Buffer: [some spaghetti bolognese]
- Left-arc (reduce): Let σ denote the stack, $\sigma|w_{-1}$ = stack ending in w₋₁
- "Pop two elements, add an arc, put them back on the stack" $\sigma|w_{-2},w_{-1}|\to \sigma|w_{-1} \quad w_{-2} \text{ is now a child of } w_{-1}$
- ► State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese] ↓

Arc-Standard Parsing

ROOT

- I ate some spaghetti bolognese
- ▶ Start: stack contains [ROOT], buffer contains [I ate some spaghetti bolognese]
- ▶ Arc-standard system: three operations
 - ▶ Shift: top of buffer -> top of stack
 - ightarrow Left-Arc: $\sigma|w_{-2},w_{-1}$ ightarrow $\sigma|w_{-1}$, w_{-2} is now a child of w_{-1}
 - ullet Right-Arc $\sigma|w_{-2},w_{-1}$ $ightarrow \sigma|w_{-2}$, w_{-1} is now a child of w_{-2}
- ▶ End: stack contains [ROOT], buffer is empty []
- ▶ How many transitions do we need if we have n words in a sentence?

Arc-Standard Parsing

S top of buffer -> top of stack

LA pop two, left arc between them

RA pop two, right arc between them

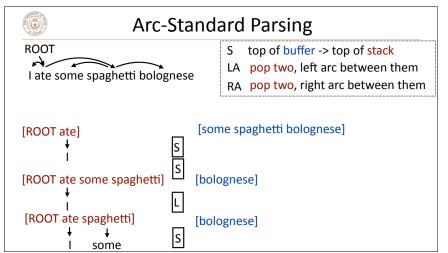
[I ate some spaghetti bolognese]

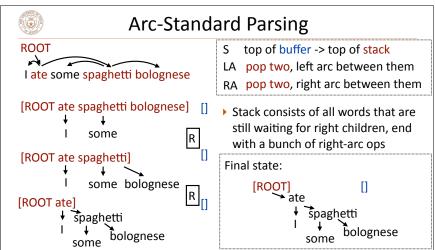
[ate some spaghetti bolognese]

[some spaghetti bolognese]

[some spaghetti bolognese]

- ▶ Could do the left arc later! But no reason to wait
- ▶ Can't attach ROOT <- ate yet even though this is a correct dependency!





Other Systems

- ▶ Arc-eager (Nivre, 2004): lets you add right arcs sooner and keeps items on stack, separate reduce action that clears out the stack
- Arc-swift (Qi and Manning, 2017): explicitly choose a parent from what's on the stack
- ▶ Many ways to decompose these, which one works best depends on the language and features (nonprojective variants too!)

Building Shift-Reduce Parsers

[ROOT]

[I ate some spaghetti bolognese]

- ▶ How do we make the right decision in this case?
- Only one legal move (shift)

[ROOT ate some spaghetti] [bolognese]

↓

I

- ▶ How do we make the right decision in this case? (all three actions legal)
- ▶ Multi-way classification problem: shift, left-arc, or right-arc?

 $\operatorname{argmax}_{a \in \{\text{S.LA.RA}\}} w^{\top} f(\text{stack, buffer}, a)$

Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognese] ↓ I

- ▶ Features to know this should left-arc?
- ▶ One of the harder feature design tasks!
- In this case: the stack tag sequence VBD DT NN is pretty informative
 ─ looks like a verb taking a direct object which has a determiner in it
- ▶ Things to look at: top words/POS of buffer, top words/POS of stack, leftmost and rightmost children of top items on the stack

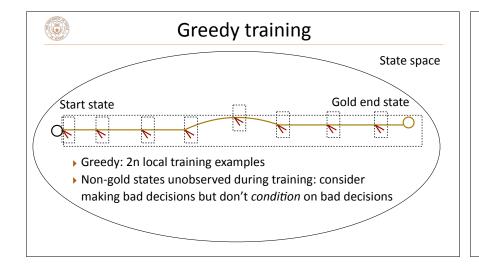
Training a Greedy Model

[ROOT ate some spaghetti] [bolognese]

↓

I

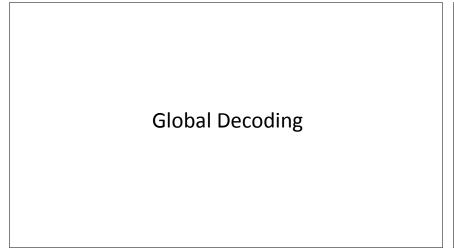
- $\underset{a \in \{\text{S,LA,RA}\}}{\operatorname{argmax}} w^{\top} f(\text{stack, buffer}, a)$ \blacktriangleright Can turn a tree into a decision sequence \boldsymbol{a} by building an *oracle*
- ▶ Train a classifier to predict the right decision using these as training data
- Training data assumes you made correct decisions up to this point and teaches you to make the correct decision, but what if you screwed up...

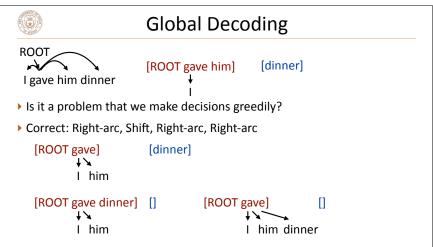


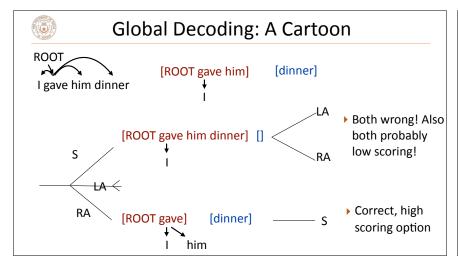
Speed Tradeoffs

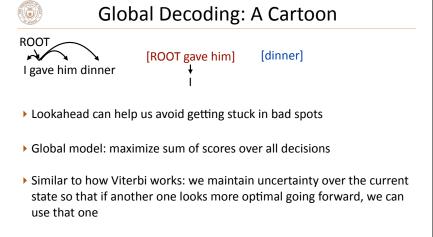
	Parser	De	ev	Te	st	Speed
	raisei	UAS	LAS	UAS	LAS	(sent/s)
Unoptimized S-R $\left\{ ight.$	standard	89.9	88.7	89.7	88.3	51
	eager	90.3	89.2	89.9	88.6	63
Optimized S-R $\left\{ \right.$	Malt:sp	90.0	88.8	89.9	88.5	560
	Malt:eager	90.1	88.9	90.1	88.7	535
Graph-based {	MSTParser	92.1	90.8	92.0	90.5	12
Neural S-R {	Our parser	92.2	91.0	92.0	90.7	1013

- ▶ Many early-2000s constituency parsers were ~5 sentences/sec
- Using S-R used to mean taking a performance hit compared to graph-based, that's no longer (quite as) true
 Chen and Manning (2014)









Global Shift-Reduce Parsing

▶ Greedy: repeatedly execute

$$a_{\text{best}} \leftarrow \operatorname{argmax}_{a} w^{\top} f(s, a)$$
 $\operatorname{argmax}_{s, \mathbf{a}} w^{\top} f(s, \mathbf{a}) = \sum_{i=1}^{2n} w^{\top} f(s_i, a_i)$

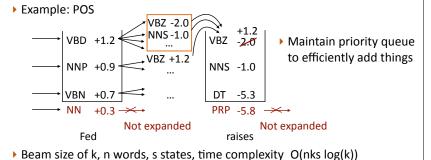
$$s \leftarrow a_{\text{best}}(s)$$

$$s_{i+1} = a_i(s_i)$$

- ▶ Can we do search exactly? How many states s are there?
- No! Use beam search

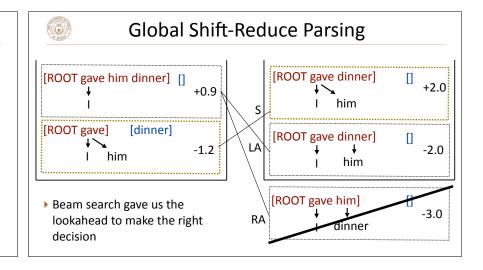
Beam Search

▶ Maintain a beam of *k* plausible states at the current timestep, expand each and only keep top *k* best new ones



How good is beam search?

- ▶ *k*=1: greedy search
- ▶ Choosing beam size:
- > 2 is usually better than 1
- ▶ Usually don't use larger than 50
- ▶ Depends on problem structure



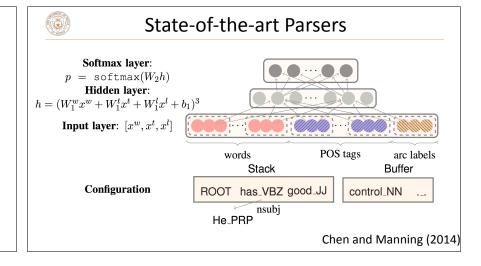
Global Training

- If using global inference, should train the parser in a global fashion as well: use structured perceptron / structured SVM
- ▶ Model treats an entire derivation as something to featurize
- No algorithm like Viterbi for doing efficient parsing, so use beam search

State-of-the-art Transition-Based Parsers

Dependency Parsers

- ▶ 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
- ▶ 2010: Koo's 3rd-order parser was SOTA for graph-based (~93 UAS)
- ▶ 2012: Maltparser was SOTA was for transition-based (~90 UAS)
- 2014: Chen and Manning got 92 UAS with transition-based neural model
- ▶ 2016: Improvements to Chen and Manning

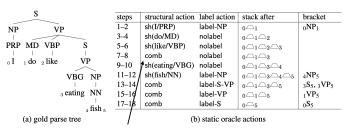


Parsey McParseFace (a.k.a. SyntaxNet)

- ▶ Close to state-of-the-art, released by Google publicly
- ▶ 94.61 UAS on the Penn Treebank using a global transition-based system with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)
- Additional data harvested via "tri-training", form of self-training
- Feedforward neural nets looking at words and POS associated with words in the stack / those words' children / words in the buffer
- Feature set pioneered by Chen and Manning (2014), Google fine-tuned it
- ▶ Shift-reduce parsers are often playing "catch-up", hard to really push the SOTA with shift-reduce because it's harder to design models

Andor et al. (2016)

Shift-Reduce Constituency



combine with no label for ternary rules

 Can do shift-reduce for constituency as well, reduce operation builds constituents

Cross and Huang (2016)

Recap

- ▶ Shift-reduce parsing can work nearly as well as graph-based
- ▶ Arc-standard system for transition-based parsing
- ▶ Purely greedy or more "global" approaches
- ▶ Next time: semantic parsing