
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	14:	
Seman<cs	I

Recall:	Dependencies

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntac<c	structure	is	defined	by	dependencies	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol	
‣ Dependencies	must	form	a	directed	acyclic	graph

ROOT

Recall:	ShiR-Reduce	Parsing

I	ate	some	spagheT	bolognese

ROOT

‣ State:	Stack:		[ROOT	I	ate]				Buffer:		[some	spagheT	bolognese]

‣ LeR-arc	(reduce	opera<on):	Let					denote	the	stack�
‣ “Pop	two	elements,	add	an	arc,	put	them	back	on	the	stack”

�|w�2, w�1 ! �|w�1 w�1w�2 is	now	a	child	of,

‣ Train	a	classifier	to	make	these	decisions	sequen<ally	—	that	classifier	
can	parse	sentences	for	you

Where	are	we	now?

‣ Early	in	the	class:	bags	of	word	(classifiers)	=>	sequences	of	words	
(sequence	modeling)

‣Why	is	this	useful?	What	does	this	allow	us	to	do?

‣ Now	we	can	understand	sentences	in	terms	of	tree	structures	as	well

‣We’re	going	to	see	how	parsing	can	be	a	stepping	stone	towards	more	
formal	representa<ons	of	language	meaning

Today

‣Model	theore<c	seman<cs

‣ CCG	parsing	for	database	queries

‣ Composi<onal	seman<cs	with	first-order	logic

‣ Lambda-DCS	for	ques<on	answering

‣Montague	seman<cs:

Model	Theore<c	Seman<cs

Model	Theore<c	Seman<cs
‣ Key	idea:	can	ground	out	natural	language	expressions	in	set-
theore<c	expressions	called	models	of	those	sentences

‣ Natural	language	statement	S	=>	interpreta<on	of	S	that	models	it

‣ Entailment	(statement	A	implies	statement	B)	reduces	to:	in	all	worlds	
where	A	is	true,	B	is	true

She	likes	going	to	that	restaurant

‣ Interpreta<on:	defines	who	she	and	that	restaurant	are,	make	it	able	to	
be	concretely	evaluated	with	respect	to	a	world

‣ Our	modeling	language	is	first-order	logic

First-order	Logic

‣ sings	is	a	predicate	(with	one	argument),	func<on	f:	en<ty	→	true/false

‣ Powerful	logic	formalism	including	things	like	en<<es,	rela<ons,	and	
quan<fica<ons

‣ [[sings]]	=	denota7on,	set	of	en<<es	which	sing	(found	by	execu<ng	this	
predicate	on	the	world	—	we’ll	come	back	to	this)

Lady	Gaga	sings

‣ sings(Lady	Gaga)	=	true	or	false,	have	to	execute	this	against	some	
database	(world)

Quan<fica<on

‣ ∀x	sings(x)	∨	dances(x)	→	performs(x)

‣ ∃y	∀x	friend(x,y)

‣ Universal	quan<fica<on:	“forall”	operator

‣ Existen<al	quan<fica<on:	“there	exists”	operator

‣ ∀x	∃y	friend(x,y)

‣ Source	of	ambiguity!	“Everyone	is	friends	with	someone”

“Everyone	who	sings	or	dances	performs”

“Someone	sings”‣ ∃x	sings(x)

Logic	in	NLP
‣ Ques<on	answering:

‣ Informa<on	extrac<on: Lady	Gaga	and	Eminem	are	both	musicians

∀x	musician(x)	=>	performer(x)

musician(Lady	Gaga)	∧	musician(Eminem)	

Then:	performer(Lady	Gaga)	∧	performer(Eminem)	

Who	are	all	the	American	singers	named	Amy?

λx.	na<onality(x,USA)	∧	sings(x)	∧	firstName(x,Amy)

‣ Func<on	that	maps	from	x	to	true/false,	like	filter.	Execute	this	
on	the	world	to	answer	the	ques<on

‣ Can	now	do	reasoning.	Maybe	know:

‣ Lambda	calculus:	powerful	system	for	expressing	these	func<ons

Composi<onal	Seman<cs	with	First-
Order	Logic

Montague	Seman<cs

Id Name Alias Birthdate Sings?
e470 Stefani	Germano8a Lady	Gaga 3/28/1986 T
e728 Marshall	Mathers Eminem 10/17/1972 T

‣ Database	containing	en<<es,	predicates,	etc.

‣ Sentence	expresses	something	about	the	world	which	is	either	true	or	
false

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

‣ Denota<on:	evalua<on	of	some	expression	against	this	database

‣[[Lady	Gaga]] = e470

denota<on	of	this	string	is	an	en<ty

‣[[sings(e470)]] = True

denota<on	of	this	expression	is	T/F

Montague	Seman<cs

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

e470

λy. sings(y)
takes	one	argument	(y,	the	en<ty)	and	
returns	a	logical	form	sings(y)

λy. sings(y)

sings(e470)

‣We	can	use	the	syntac<c	parse	as	a	bridge	to	the	lambda-calculus	
representa<on,	build	up	a	logical	form	(our	model)	composi7onally

func<on	applica<on:	apply	this	to	e470
ID

Parses	to	Logical	Forms

NP

VPNNP NNP

S

VBP
Lady			Gaga

sings

e470

λy. sings(y)

sings(e470) ∧ dances(e470)

VP

CC VP

VBP
dances
λy. dances(y)

and

VP:	λy.	a(y)	∧	b(y)	->	VP:	λy.	a(y)	CC	VP:	λy.	b(y)

λy. sings(y) ∧ dances(y)

‣ General	rules:
S:	f(x)	->	NP:	x	VP:	f

Parses	to	Logical	Forms

NP

NNP NNP

S

VBD
Lady			Gaga was

e470

λx.λy. born(y,x)

born(e470,3/28/1986)

VP

NP

March	28,	1986born

λy. born(y, 3/28/1986)

VBN

VP

λy. born(y, 3/28/1986)

‣ How	to	handle	tense:	should	we	indicate	that	this	happened	in	the	past?
‣ Func<on	takes	two	arguments:	first	x	(date),	then	y	(en<ty)

3/28/1986

Tricky	things
‣ Adverbs/temporality:	Lady	Gaga	sang	well	yesterday

∃e. type(e,sing) ∧ agent(e,e470) ∧ manner(e,well) ∧ time(e,…)
‣ “Neo-Davidsonian”	view	of	events:	things	with	many	proper<es:

‣ Quan<fica<on:	Everyone	is	friends	with	someone

‣ Generic:	Cats	eat	mice	(all	cats	eat	mice?	most	cats?	some	cats?)

∀x ∃y friend(x,y)∃y ∀x friend(x,y)
(different	friends)(one	friend)

‣ Same	syntac<c	parse	for	both!	So	syntax	doesn't	resolve	all	ambigui<es

sings(Lady Gaga, time=yesterday, manner=well)

‣ Indefinite:	Amy	ate	a	waffle ∃w. waffle(w) ∧ ate(Amy,w)

Seman<c	Parsing

‣ For	ques<on	answering,	syntac<c	parsing	doesn’t	tell	you	everything	you	
want	to	know,	but	indicates	the	right	structure

‣ Solu<on:	seman7c	parsing:	many	forms	of	this	task	depending	on	
seman<c	formalisms

‣ Two	today:	CCG	(looks	like	what	we’ve	been	doing)	and	lambda-DCS

‣ Applica<ons:	database	querying/ques<on	answer:	produce	lambda-
calculus	expressions	that	can	be	executed	in	these	contexts

CCG	Parsing

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	(1980s):	formalism	bridging	syntax	and	seman<cs

‣ Syntac<c	categories	(for	this	lecture):	S,	NP,	
“slash”	categories

‣ S\NP:	“if	I	combine	with	an	NP	on	my	
leR	side,	I	form	a	sentence”	—	verb

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

‣ Parallel	deriva<ons	of	syntac<c	parse	and	lambda	calculus	expression

‣When	you	apply	this,	there	has	to	be	a	
parallel	instance	of	func<on	
applica<on	on	the	seman<cs	side

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	1980s:	formalism	bridging	syntax	and	seman<cs

‣ Syntac<c	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	leR	side,	I	form	a	sentence”	—	verb

‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	leR”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas
e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)

CCG	Parsing

Ze8lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

CCG	Parsing

Ze8lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

‣ Lexicon	is	highly	ambiguous	—	all	the	challenge	of	CCG	parsing	is	in	
picking	the	right	lexicon	entries

CCG	Parsing

Slide	credit:	Dan	Klein

‣ “to”	needs	an	NP	(des<na<on)	and	N	(parent)

CCG	Parsing

Ze8lemoyer	and	Collins	(2005)

‣Many	ways	to	build	these	parsers

‣ One	approach:	run	a	“supertagger”	(tags	the	sentence	with	complex	
labels),	then	run	the	parser

‣ Parsing	is	easy	once	you	have	the	tags,	so	we’ve	reduced	it	to	a	(hard)	
tagging	problem

Building	CCG	Parsers

Ze8lemoyer	and	Collins	(2005)

‣Model:	log-linear	model	over	
deriva<ons	with	features	on	rules:

P (d|x) / expw>

X

r2d

f(r, x)

!

‣ Can	parse	with	a	variant	of	CKY
Eminem sings

NP S\NP
e728 λy. sings(y)

S
sings(e728)

f

f

f =	Indicator(S\NP	->	sings)

=	Indicator(S	->	NP	S\NP)

Building	CCG	Parsers

Ze8lemoyer	and	Collins	(2005)

‣ Training	data	looks	like	pairs	of	sentences	and	logical	forms

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

‣ Texas	corresponds	to	NP	|	e89	in	the	logical	form	(easy	to	figure	out)

(S/(S\NP))/N	|	λf.λg.λx. f(x) ∧ g(x)‣What	corresponds	to

‣ How	do	we	infer	that	without	being	told	it?

‣ Problem:	we	don’t	know	the	deriva<on

Lexicon

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

‣ Any	substring	can	parse	to	any	of	these	in	the	lexicon

‣ Chunks	inferred	from	the	logic	form	based	on	rules:

‣ GENLEX:	takes	sentence	S	and	logical	form	L.	Break	up	logical	form	
into	chunks	C(L),	assume	any	substring	of	S	might	map	to	any	chunk

‣ Texas	->	NP:	e89	is	correct
‣ border	Texas	->	NP:	e89
‣What	states	border	Texas	->	NP:	e89
… Ze8lemoyer	and	Collins	(2005)

‣ NP:	e89	 ‣ (S\NP)/NP:	λx.	λy. borders(x,y)

GENLEX

‣ Very	complex	and	hand-engineered	way	of	taking	lambda	calculus	
expressions	and	“backsolving”	for	the	deriva<on

Ze8lemoyer	and	Collins	(2005)

Learning

Ze8lemoyer	and	Collins	(2005)

‣ Itera<ve	procedure	like	the	EM	algorithm:	es<mate	“best”	parses	that	
derive	each	logical	form,	retrain	the	parser	using	these	parses	with	
supervised	learning

‣We’ll	talk	about	a	simpler	form	of	this	in	a	few	slides

Applica<ons

‣ GeoQuery:	answering	ques<ons	about	states	(~80%	accuracy)

‣ Jobs:	answering	ques<ons	about	job	pos<ngs	(~80%	accuracy)

‣ ATIS:	flight	search

‣ Can	do	well	on	all	of	these	tasks	if	you	handcraR	systems	and	use	
plenty	of	training	data:	these	domains	aren’t	that	rich

‣What	about	broader	QA?

Lambda-DCS

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

‣ Dependency-based	composi<onal	seman<cs	—	original	version	was	
less	powerful	than	lambda	calculus,	lambda-DCS	is	as	powerful

‣ Designed	in	the	context	of	building	a	QA	system	from	Freebase

‣ Freebase:	set	of	en<<es	and	rela<ons

Alice	Smith

Bob	Cooper

Sea8le

March	15,	1961 Washington
DateOfBirth

PlaceOfBirth

PlaceOfBirth

CapitalOf

‣ [[PlaceOfBirth]]	=	set	of	pairs	of	(person,	loca<on)

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Lambda-DCS Lambda	calculus

Seattle λx. x = Seattle
PlaceOfBirth λx.λy. PlaceOfBirth(x,y)

PlaceOfBirth.Seattle λx. PlaceOfBirth(x,Seattle)

‣ Looks	like	a	tree	fragment	over	Freebase

Sea8lePlaceOfBirth???

Profession.Scientist ∧
PlaceOfBirth.Seattle

λx. Profession(x,Scientist)
∧ PlaceOfBirth(x,Seattle)

Lambda-DCS

Liang	et	al.	(2011),	Liang	(2013)

Alice	Smith

Bob	Cooper

Sea8le

March	15,	1961 Washington
DateOfBirth

PlaceOfBirth

PlaceOfBirth

CapitalOf

Profession

Scien<st

Profession.Scientist ∧
PlaceOfBirth.Seattle“list	of	scien<sts	born	in	Sea8le”

‣ Execute	this	fragment	against	Freebase,	returns	Alice	Smith	(and	
others)

???

Sea8le
PlaceOfBirthProfession

Scien<st

Parsing	into	Lambda-DCS

Berant	et	al.	(2013)

‣ Building	the	lexicon:	more	sophis<cated	process	than	GENLEX,	but	can	
handle	thousands	of	predicates

‣ Log-linear	model	with	features	on	rules: P (d|x) / expw>

X

r2d

f(r, x)

!

‣ Deriva<on	d	on	sentence	x:

‣ Similar	to	CRF	parsers

‣ No	more	explicit	syntax  
in	these	deriva<ons  
like	we	had	in	CCG

Parsing	with	Lambda-DCS

Berant	et	al.	(2013)

‣ Learn	just	from	ques<on-answer	pairs:	maximize	the	likelihood	of	the	
right	denota<on	y	with	the	deriva<on	d	marginalized	out

For	each	example:
Run	beam	search	to	get	a	set	of	deriva<ons

Let	d*	=	highest-scoring	deriva<on	in	the	beam	with	correct	denota7on
Do	a	structured	perceptron	update	towards	d*	away	from	d

Let	d	=	highest-scoring	deriva<on	in	the	beam

sum	over	deriva<ons	d	such	that	the	
denota<on	of	d	on	knowledge	base	K	is	yi

Takeaways

‣ Can	represent	meaning	with	first	order	logic	and	lambda	calculus

‣ Useful	for	querying	databases,	ques<on	answering,	etc.

‣ Can	bridge	syntax	and	seman<cs	and	create	seman<c	parsers	that	can	
interpret	language	into	lambda-calculus	expressions

‣ Next	<me:	neural	net	methods	for	doing	this	that	rely	less	on	having	
explicit	grammars

