CS388: Natural Language Processing

Lecture 14:
Semantics |

Greg Durrett
TEXA

The University of Texas at Austin

Recall: Dependencies

» Dependency syntax: syntactic structure is defined by dependencies
» Head (parent, governor) connected to dependent (child, modifier)
» Each word has exactly one parent except for the ROOT symbol
» Dependencies must form a directed acyclic graph

<7 N\

DT NN VBD TO DT NN
the dog ran to the house

ROOT

Recall: Shift-Reduce Parsing

ROOT
K‘\/_K_\/_\

| ate some spaghetti bolognese
» State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

» Left-arc (reduce operation): Let g denote the stack
» “Pop two elements, add an arc, put them back on the stack”
| olw_s, w,1|—>|0|w,1|, w_g is now a child of w_y

» Train a classifier to make these decisions sequentially — that classifier
can parse sentences for you

Where are we now?

» Early in the class: bags of word (classifiers) => sequences of words
(sequence modeling)

» Now we can understand sentences in terms of tree structures as well
» Why is this useful? What does this allow us to do?

» We're going to see how parsing can be a stepping stone towards more
formal representations of language meaning

Today
» Montague semantics:

» Model theoretic semantics

» Compositional semantics with first-order logic

» CCG parsing for database queries

» Lambda-DCS for question answering

Model Theoretic Semantics

Model Theoretic Semantics

» Key idea: can ground out natural language expressions in set-
theoretic expressions called models of those sentences
» Natural language statement S => interpretation of S that models it
She likes going to that restaurant
» Interpretation: defines who she and that restaurant are, make it able to
be concretely evaluated with respect to a world
» Entailment (statement A implies statement B) reduces to: in all worlds
where A is true, B is true

» Our modeling language is first-order logic

First-order Logic

» Powerful logic formalism including things like entities, relations, and
guantifications

Lady Gaga sings

» sings is a predicate (with one argument), function f: entity — true/false

» sings(Lady Gaga) = true or false, have to execute this against some
database (world)

» [[sings]] = denotation, set of entities which sing (found by executing this
predicate on the world — we’ll come back to this)

Quantification

» Universal quantification: “forall” operator
» Vx sings(x) v dances(x) — performs(x)
“Everyone who sings or dances performs”
» Existential quantification: “there exists” operator

» 3Ix sings(x) “Someone sings”

» Source of ambiguity! “Everyone is friends with someone”
» vx 3y friend(x,y)
» Iy vx friend(x,y)

Logic in NLP

» Question answering:
Who are all the American singers named Amy?
Ax. nationality(x,USA) A sings(x) A firstName(x,Amy)

» Function that maps from x to true/false, like £ilter. Execute this
on the world to answer the question

» Lambda calculus: powerful system for expressing these functions
» Information extraction: Lady Gaga and Eminem are both musicians
musician(Lady Gaga) A musician(Eminem)
» Can now do reasoning. Maybe know: Vvx musician(x) => performer(x)

Then: performer(Lady Gaga) A performer(Eminem)

Compositional Semantics with First-
Order Logic

Montague Semantics

S
/\ Id Name Alias Birthdate Sings?
VP e470 Stefani Germanotta Lady Gaga 3/28/1986 T
/NP\ | e728 Marshall Mathers Eminem 10/17/1972 T

NNP NNP VBP

. » Database containing entities, predicates, etc.
Lady Gaga sings g P

» Sentence expresses something about the world which is either true or
false

» Denotation: evaluation of some expression against this database
» [[Lady Gaga]] = e470 » [[sings(ed470)]] = True
denotation of this string is an entity denotation of this expression is T/F

Montague Semantics

sings(e470)
S function application: apply this to e470
ID

ed70 NP VP Ay. sings(y)

PN |
NNP NNP VBP
Lady Gaga sings \y. sings(y)
takes one argument (y, the entity) and
returns a logical form sings(y)

» We can use the syntactic parse as a bridge to the lambda-calculus
representation, build up a logical form (our model) compositionally

Parses to Logical Forms

sings(e470) A dances(e470)

S
T
e470 NP VP Ay. sings(y) A dances(y)

/\ VP/C|C\VP

NNP NNP
Lady Gaga | and |
VBP VBP

sings dances

Ay. sings(y) Ay. dances(y)

» General rules: VP:Ay. a(y) A b(y) ->VP: Ay. a(y) CCVP: Ay. b(y)
S: f(x) -> NP: x VP: f

Parses to Logical Forms

born(e470,3/28/1986)
S

T

e470 NP VP Ay. born(y, 3/28/1986)

/\
AN VP Ay. born(y, 3/28/1986)

VBD
NNP NNP —~
Lady Gaga Was NP

VBN _—
born March 28, 1986
Ax.A\y. born(y,x) 3/28/1986
» Function takes two arguments: first x (date), then y (entity)
» How to handle tense: should we indicate that this happened in the past?

Tricky things
» Adverbs/temporality: Lady Gaga sang well yesterday
sings(Lady Gaga, time=yesterday, manner=well)

» “Neo-Davidsonian” view of events: things with many properties:
Je. type(e,sing) A agent(e,e470) A manner(e,well) A time(e,..

» Quantification: Everyone is friends with someone

Jy vx friend(x,y) vx 3y friend(x,y)
(one friend) (different friends)

» Same syntactic parse for both! So syntax doesn't resolve all ambiguities
» Indefinite: Amy ate a waffle 3w. waffle(w) A ate(Amy,w)
» Generic: Cats eat mice (all cats eat mice? most cats? some cats?)

Semantic Parsing

» For question answering, syntactic parsing doesn’t tell you everything you
want to know, but indicates the right structure

» Solution: semantic parsing: many forms of this task depending on
semantic formalisms

» Two today: CCG (looks like what we’ve been doing) and lambda-DCS

» Applications: database querying/question answer: produce lambda-
calculus expressions that can be executed in these contexts

CCG Parsing

Combinatory Categorial Grammar

» Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
» Parallel derivations of syntactic parse and lambda calculus expression

» Syntactic categories (for this lecture): S, NP,
“slash” categories

. . . S
» S\NP: “if | combine with an NP on my sings(e728)
left side, | form a sentence” — verb
NP S\NP
» When you apply this, there has to be a e728 || Ay. sings(y)
parallel instance of function Eminem sings

application on the semantics side

Combinatory Categorial Grammar

» Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
» Syntactic categories (for this lecture): S, NP, “slash” categories
» S\NP: “if | combine with an NP on my left side, | form a sentence” — verb

» (S\NP)/NP: “I need an NP on my right and then on my left” — verb
with a direct object S
borders(el01,e89)

S S\NP
sings(e728) Ay borders(y,e89)
NP S\NP NP (S\NP)/NP NP
e728 Ay. sings(y) €101 ||Ax.\y borders(y,x)|| €89

Eminem sings Oklahoma borders Texas

CCG Parsing

What states border Texas

(S/(S\NP))/N N (S\NP)/NP NP

AfAgAz.f(x) Ag(z) Ax.state(x) Az.Ay.borders(y,z) texas
(S\NP)

Ay.borders(y, texas)

» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)

Zettlemoyer and Collins (2005)

CCG Parsing
What states border Texas
(S/(S\NP))/N N (S\NP)/NP NP
AfAgAz.f(x) A g(z) | Ax.state(z) Az.Ay.borders(y,z) texas

S/(S\NP)

(S\NP)
Ag.Az.state(z) A g(x)

Ay.borders(y, texas)

Az.state(z) A borders(z, texas)
» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)
» Lexicon is highly ambiguous — all the challenge of CCG parsing is in
picking the right lexicon entries Zettlemoyer and Collins (2005)

CCG Parsing
Show me flights to Prague
S/N N (N\N) /NP NP
Af. £ Ax.flight(x) Ay.Af.Ax.f(y)Ato(x,y) PRG

N\N
Af.Ax.f(x)Ato(x,PRG)

N
Ax.flight (x) Ato(x,PRG)

S
Ax.flight (x) Ato(x,PRG)
» “to” needs an NP (destination) and N (parent)

Slide credit: Dan Klein

CCG Parsing

» Many ways to build these parsers

» One approach: run a “supertagger” (tags the sentence with complex
labels), then run the parser

What states border Texas

(S/(S\NP))/N N (S\NP)/NP NP
AfAgAz.f(z) Ag(x) Az.state(z) Az.Ay.borders(y,z) texas

» Parsing is easy once you have the tags, so we’ve reduced it to a (hard)
tagging problem

Zettlemoyer and Collins (2005)

Building CCG Parsers
P(d)z) < expw " (Z I x))

red

» Model: log-linear model over
derivations with features on rules:

S
f sings(e728)

= Indicator(S -> NP S\NP)

(] ~e f< S\NP = Indicator(S\NP -> sings)

e728 Ay. sings(y)

Eminem sings

» Can parse with a variant of CKY
Zettlemoyer and Collins (2005)

Building CCG Parsers

» Training data looks like pairs of sentences and logical forms
What states border Texas Ax. state(x) A borders(x, e89)

» Problem: we don’t know the derivation

» Texas corresponds to NP | €89 in the logical form (easy to figure out)

» What corresponds to (S/(S\NP))/N | Af . Ag.Ax. £(x) A g(x)

» How do we infer that without being told it?

Zettlemoyer and Collins (2005)

Lexicon

» GENLEX: takes sentence S and logical form L. Break up logical form
into chunks C(L), assume any substring of S might map to any chunk

What states border Texas Ax. state(x) A borders(x, e89)

» Chunks inferred from the logic form based on rules:
» NP: e89 » (S\NP)/NP: Ax. Ay. borders(x,y)

» Any substring can parse to any of these in the lexicon
» Texas -> NP: e89 is correct
» border Texas -> NP: e89

» What states border Texas -> NP: e89
Zettlemoyer and Collins (2005)

GENLEX

Rules Categories produced from logical form
Input Trigger Output Category arg max(\z.state(z) A borders(z, tezas), Az.size(z))
constant ¢ NP:c NP :texas
arity one predicate py N : Az.p, () N : Az.state(z)

arity one predicate py S\NP : dz.p,(z) S\NP : hz.state(z)

arity two predicate po (S\NP)/NP : Az.\y.p2(y, z) (S\NP)/NP : Az.\y.borders(y, z)

arity two predicate p2 (S\NP)/NP : Az dy.p2(z,y) (S\NP)/NP : Az.\y.borders(z,y)

arity one predicate py N/N : Ag.Az.p1(z) A g(z) N/N : Ag.z.state(z) A g(z)

literal with arity two predicate p2

and constant second argument ¢ N/N : Ag-Az.p2(, ¢) A g(z)

N/N : Ag.\z.borders(z, tezas) A g(z)

arity two predicate p (N\N)/NP : Xx.Ag.My.p2(z,y) A g(z) (N\N)/NP : Ag.\z.\y.borders(z,y) A g(z)

an arg max / min with second

argument arity one function f NP/N : Ag. arg max / min(g, Az.f(z))

NP/N : Ag.arg max(g, Az.size(z))

an arity one

numeric-ranged function f S/NP: xz.f(z)

S/NP : Az.size(z)

» Very complex and hand-engineered way of taking lambda calculus
expressions and “backsolving” for the derivation

Zettlemoyer and Collins (2005)

Learning

» Iterative procedure like the EM algorithm: estimate “best” parses that
derive each logical form, retrain the parser using these parses with
supervised learning

» We'll talk about a simpler form of this in a few slides

Zettlemoyer and Collins (2005)

Applications
» GeoQuery: answering questions about states (~80% accuracy)
» Jobs: answering questions about job postings (~80% accuracy)
» ATIS: flight search

» Can do well on all of these tasks if you handcraft systems and use
plenty of training data: these domains aren’t that rich

» What about broader QA?

Lambda-DCS

Lambda-DCS

» Dependency-based compositional semantics — original version was
less powerful than lambda calculus, lambda-DCS is as powerful

» Designed in the context of building a QA system from Freebase

» Freebase: set of entities and relations

Bob Cooper
March 15, 1961 N Washington
. PlaceOfBirth -~
DateOfBirth \ CapitalOf
I

/
. . PlaceOfgirth— Seattle
Alice Smith — 2P

» [[PlaceOfBirth]] = set of pairs of (person, location)

Liang et al. (2011), Liang (2013)

Lambda-DCS

Lambda-DCS Lambda calculus
Seattle Ax. x = Seattle
PlaceOfBirth Ax.Ay. PlaceOfBirth(x,y)
PlaceOfBirth.Seattle Ax. PlaceOfBirth(x,Seattle)

» Looks like a tree fragment over Freebase

27?7 — PlaceOfBirth ™ Seattle

Ax. Profession(x,Scientist)
A PlaceOfBirth(x,Seattle)

Profession.Scientist A
PlaceOfBirth.Seattle

Liang et al. (2011), Liang (2013)

Lambda-DCS

Bob Cooper
March 15, 1961 \ P Washington
Date(')fBirth PlaCeOiBirth ~

CapitalOf
I -
Allce Smith ___PlaceOfBirth ~ Seattle
___Profession— 277

Scientist I)
_—Profession PlaceOfBirth __

Scientist
Profession.Scientist A
PlaceOfBirth.Seattle

Seattle

“list of scientists born in Seattle”

» Execute this fragment against Freebase, returns Alice Smith (and
others)

Liang et al. (2011), Liang (2013)

Parsing into Lambda-DCS

Type.Location [PeopleBornHere.BarackObama
—intersection—— __

» Derivation d on sentence x:

Type.Location was PeopleBornHere.BarackObama

» No more explicit syntax

. i R ‘lexicon _—Join—__ —
in these derivations
. . where BarackObama PeopleBornHere
like we had in CCG . .
‘ lexicon ‘ lexicon
Obama born

» Building the lexicon: more sophisticated process than GENLEX, but can

handle thousands of predicates
P(d|z) < expw (Z f(r,x))

red

» Log-linear model with features on rules:

» Similar to CRF parsers
Berant et al. (2013)

Parsing with Lambda-DCS

» Learn just from question-answer pairs: maximize the likelihood of the
right denotation y with the derivation d marginalized out

00)=31og S pild|a).

=1 deD(z):[d.z] K =Yi sum over derivations d such that the
For each example: denotation of d on knowledge base Kis y;

Run beam search to get a set of derivations
Let d = highest-scoring derivation in the beam
Let d* = highest-scoring derivation in the beam with correct denotation

Do a structured perceptron update towards d* away from d
Berant et al. (2013)

Takeaways
» Can represent meaning with first order logic and lambda calculus

» Can bridge syntax and semantics and create semantic parsers that can
interpret language into lambda-calculus expressions

» Useful for querying databases, question answering, etc.

» Next time: neural net methods for doing this that rely less on having
explicit grammars

