
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	15:	
Seman<cs	
II	/	Seq2seq	I

credit:	NawaphonIsarathanachaikul	on	imgflip

Administrivia

‣ Project	2	out	today

‣Mini	2	graded	by	tomorrow

‣ Final	project	feedback	soon

Recall:	Parses	to	Logical	Forms

NP

VPNNP NNP

S

VBP
Lady			Gaga

sings

e470

λy. sings(y)

sings(e470) ∧ dances(e470)

VP

CC VP

VBP
dances
λy. dances(y)

and

VP:	λy.	a(y)	∧	b(y)	->	VP:	λy.	a(y)	CC	VP:	λy.	b(y)

λy. sings(y) ∧ dances(y)

‣ General	rules:
S:	f(x)	->	NP:	x	VP:	f

Recall:	CCG
‣ Steedman+Szabolcsi	1980s:	formalism	bridging	syntax	and	seman<cs
‣ Syntac<c	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	lea	side,	I	form	a	sentence”	—	verb
‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	lea”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas
e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)

This	Lecture

‣ Seq2seq	models

‣ Seq2seq	models	for	seman<c	parsing

‣ Intro	to	a8en<on Encoder-Decoder	Models

Mo<va<on
‣ Parsers	have	been	pre8y	hard	to	build…

‣ Cons<tuency/graph-based:	complex	dynamic	programs

‣ Transi<on-based:	complex	transi<on	systems

‣ CCG/seman<c	parsers:	complex	syntax/seman<cs	interface,	challenging	
inference,	challenging	learning

‣ For	seman<c	parsing	in	par<cular:	bridging	the	syntax-seman<cs	divide	
results	in	structural	weirdnesses	in	parsers,	hard	to	learn	the	right	
seman<c	grammar

‣ Encoder-decoder	models	can	(in	principle)	predict	any	linearized	
sequence	of	tokens

Encoder-Decoder

‣ Seman<c	parsing:

What	states	border	Texas λ x state(x) ∧ borders(x , e89)

‣ Syntac<c	parsing

The	dog	ran (S (NP (DT the) (NN dog)) (VP (VBD ran)))

(but	what	if	we	produce	an	invalid	tree	or	one	with	different	words?)	🤔

‣Machine	transla<on,	summariza<on,	dialogue	can	all	be	viewed	in	this	
framework	as	well

Encoder-Decoder
‣ Encode	a	sequence	into	a	fixed-sized	vector

the		movie		was			great

‣ Now	use	that	vector	to	produce	a	series	of	tokens	as	output	from	a	
separate	LSTM	decoder

le						film			était			bon	[STOP]

Sutskever	et	al.	(2014)

Encoder-Decoder

‣ Is	this	true?	Sort	of…we’ll	come	back	to	
this	later

Model
‣ Generate	next	word	condi<oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great <s>

h̄

‣W	size	is	|vocab|	x	|hidden	state|,	soamax	over	en<re	vocabulary

Decoder	has	separate	
parameters	from	encoder,	so	
this	can	learn	to	be	a	language	
model	(produce	a	plausible	next	
word	given	current	one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)y1
<latexit sha1_base64="7G4kLJYkX3D7/ov8pWJUOLn1JaM=">AAAGE3icjVTLbtQwFE3LDJTwamHJxqIaNVFDlbSVQEhFFWwQEtLw6ENq2shxPBmrecl2mhll/A9s+BU2LECILRt2/A2OkxQ6nbZYmszNOee+7Bv7WUQYt+3fc/PXOt3rNxZu6rdu37l7b3Hp/i5Lc4rwDkqjlO77kOGIJHiHEx7h/YxiGPsR3vOPX1b83gmmjKTJBz7O8GEMw4QMCIJcQt5Sx+y5MMqG0HMMZoIt4OJRZrjZkHjYYJZjuTHkQ39QjoRp6q2WG8zjSs3y2CuZV/LHjhCgodWb0aDm2ZAet/h00FOet05WFd8EkvMxn5lvVeVTrHoxGnA6nQIt+bg0Kbdad5U0wgNu1LlC4JIEuByPOI3LJKQwZjJz4UkCBSkHyKUkHPIqZJSGoG+Mt5xJYSETrAJ3QCEqHVEei6Z0suWIIxmvldqTwiNSrPf6RltgIapW+0bhOab6W5+cmhuVaUlI9hnJ9KxylCEUXCOSLYna+DpIxUkgqfZhSqGcJ21zJ4QRjgPwHibKua6+ZVGaJ1wYs8QWKEzxP0JTnM2YyP0rYMIBT0GYyud0SVcKXqfDBLQp3sAAhpAhSOv6I/kdBHKyL+/kohCXdnWBkylHY7U5GWXUFWzOrmBW/Gqmmm36ewYTt8yegSlpZknFc9sVExmlGq4CXKXTe8xz9N6onmk1bn75ThwFoB5iSGlagNFKzZe25bjiqAxWhD72HG9x2V6z1QLnDacxlrVm9b3FX26QojzGCUcRZOzAsTN+WELKCYqw0N2c4QyiYxjiA2kmMMbssFR3mgA9iQRgkFL5k+ev0H89SvkdsnHsS2XVB5vmKnAWd5DzwdPDkiRZznGC6kSDPKomrLogQUAoRjwaSwMiSmStAA2hPAUur1FdboIz3fJ5Y3d9zdlYW3+7ubz9otmOBe2h9kgzNEd7om1rr7S+tqOhzsfO587Xzrfup+6X7vfuj1o6P9f4PNDOrO7PP83BCWI=</latexit>

Inference
‣ Generate	next	word	condi<oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predic<ons	
and	then	feed	that	to	the	next	RNN	state	

le					

<s>

‣ Need	to	actually	evaluate	computa<on	graph	up	to	this	point	to	form	
input	for	the	next	state

‣ Decoder	is	advanced	one	state	at	a	<me	un<l	[STOP]	is	reached

film était bon [STOP]

Implemen<ng	seq2seq	Models

the		movie		was			great

‣ Encoder:	consumes	sequence	of	tokens,	produces	a	vector.	Analogous	to	
encoders	for	classifica<on/tagging	tasks

le					

<s>

‣ Decoder:	separate	module,	single	cell.	Takes	two	inputs:	hidden	state	
(vector	h	or	tuple	(h,	c))	and	previous	token.	Outputs	token	+	new	state

Encoder

…

film					

le

Decoder Decoder

Training

‣ Objec<ve:	maximize

the		movie		was			great <s> le						film			était			bon

le

‣ One	loss	term	for	each	target-sentence	word,	feed	the	correct	word	
regardless	of	model’s	predic<on	(called	“teacher	forcing”)

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)

Training:	Scheduled	Sampling

‣ Star<ng	with	p	=	1	(teacher	forcing)	and	decaying	it	works	best

‣ Scheduled	sampling:	with	probability	p,	take	the	gold	as	input,	else	take	
the	model’s	predic<on

the		movie		was			great

la						film			étais			bon	[STOP]

le film était

‣Model	needs	to	do	the	right	thing	even	with	its	own	predic<ons

Bengio	et	al.	(2015)

sample

‣ “Right”	thing:	train	with	reinforcement	learning

Implementa<on	Details

‣ Sentence	lengths	vary	for	both	encoder	and	decoder:
‣ Typically	pad	everything	to	the	right	length	and	use	a	mask	or	indexing	
to	access	a	subset	of	terms

‣ Encoder:	looks	like	what	you	did	in	Mini	2

‣ Decoder:	execute	one	step	of	computa<on	at	a	<me,	so	computa<on	
graph	is	formulated	as	taking	one	input	+	hidden	state

‣ Test	<me:	do	this	un<l	you	generate	the	stop	token

‣ Training:	do	this	un<l	you	reach	the	gold	stopping	point

Implementa<on	Details	(cont’d)

‣ Batching	is	pre8y	tricky:	decoder	is	across	<me	steps,	so	you	probably	
want	your	label	vectors	to	look	like	[num	<mesteps	x	batch	size	x	num	
labels],	iterate	upwards	by	<me	steps

‣ Beam	search:	can	help	with	lookahead.	Finds	the	(approximate)	highest	
scoring	sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)

Beam	Search
‣Maintain	decoder	state,	token	history	in	beam

la:	0.4					

<s>

la

le

les

le:	0.3
les:	0.1					

log(0.4)
log(0.3)

log(0.1)

film:	0.4

la

…

film:	0.8					

le

…
le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Keep	both	film	states!	Hidden	state	vectors	are	different

the		movie		was			great

Other	Architectures
‣What’s	the	basic	abstrac<on	here?

‣ Encoder:	sentence	->	vector

‣ Decoder:	hidden	state,	output	prefix	->	new	hidden	state,	new	output

‣Wide	variety	of	models	can	apply	here:	CNN	encoders,	decoders	can	be	
any	autoregressive	model	including	certain	types	of	CNNs

‣ Transformer:	another	model	discussed	next	lecture

‣ OR:	sentence,	output	prefix	->	new	output	(more	general) Seq2seq	Seman<c	Parsing

Seman<c	Parsing	as	Transla<on

Jia	and	Liang	(2016)

‣Write	down	a	linearized	form	of	the	seman<c	parse,	train	seq2seq	models	
to	directly	translate	into	this	representa<on

‣What	might	be	some	concerns	about	this	approach?	How	do	we	mi<gate	
them?

“what	states	border	Texas”

lambda x (state(x) and border(x , e89)))

‣What	are	some	benefits	of	this	approach	compared	to	grammar-based?

Handling	Invariances

‣ Parsing-based	approaches	handle	these	the	same	way

‣ Possible	divergences:	features,	different	weights	in	the	lexicon

‣ Key	idea:	don’t	change	the	model,	change	the	data

“what	states	border	Texas” “what	states	border	Ohio”

‣ Can	we	get	seq2seq	seman<c	parsers	to	handle	these	the	same	way?

‣ “Data	augmenta<on”:	encode	invariances	by	automa<cally	genera<ng	
new	training	examples

Data	Augmenta<on

‣ Abstract	out	en<<es:	now	we	can	“remix”	examples	and	encode	
invariance	to	en<ty	ID.	More	complicated	remixes	too

‣ Lets	us	synthesize	a	“what	states	border	ohio	?”	example

Jia	and	Liang	(2016)

Seman<c	Parsing	as	Transla<on

Jia	and	Liang	(2016)

‣ Prolog

‣ Lambda	calculus

‣ Other	DSLs

‣ Handle	all	of	these	with	uniform	machinery!

Seman<c	Parsing	as	Transla<on

Jia	and	Liang	(2016)

‣ Three	forms	of	data	
augmenta<on	all	help

‣ Results	on	these	tasks	are	s<ll	not	
as	strong	as	hand-tuned	systems	
from	10	years	ago,	but	the	same	
simple	model	can	do	well	at	all	
problems

Regex	Predic<on

‣ Predict	regex	from	text

‣ Problem:	requires	a	lot	of	data:	10,000	examples	needed	to	get	~60%	
accuracy	on	pre8y	simple	regexes

Locascio	et	al.	(2016)
‣ Does	not	scale	when	regex	specifica<ons	are	more	abstract	(I	want	to	
recognize	a	decimal	number	less	than	20)

SQL	Genera<on

‣ Convert	natural	language	
descrip<on	into	a	SQL	
query	against	some	DB

‣ How	to	ensure	that	well-
formed	SQL	is	generated?

Zhong	et	al.	(2017)

‣ Three	seq2seq	models

‣ How	to	capture	column	
names	+	constants?

‣ Pointer	mechanisms,	to	
be	discussed	later

A8en<on

‣ Orange	pieces	are	probably	reused	across	many	problems

‣ LSTM	has	to	remember	the	value	of	Texas	for	13	steps!

‣ Next:	a8en<on	mechanisms	that	let	us	“look	back”	at	the	input	to	avoid	
having	to	remember	everything

“what	states	border	Texas” lambda	x	(state	(x)	and	border	(x	,	e89)))

‣ Not	too	hard	to	learn	to	generate:	start	with	lambda,	always	follow	with	x,	
follow	that	with	paren,	etc.

A8en<on

Problems	with	Seq2seq	Models

‣ Need	some	no<on	of	input	coverage	or	what	input	words	we’ve	
translated

‣ Encoder-decoder	models	like	to	repeat	themselves:

A	boy	plays	in	the	snow	boy	plays	boy	playsUn	garçon	joue	dans	la	neige

‣Why	does	this	happen?

‣Models	trained	poorly

‣ Input	is	forgo8en	by	the	LSTM	so	it	gets	stuck	in	a	“loop”	of	genera<ng	
the	same	output	tokens	again	and	again

Problems	with	Seq2seq	Models

‣ Bad	at	long	sentences:	1)	a	fixed-size	hidden	representa<on	doesn’t	
scale;	2)	LSTMs	s<ll	have	a	hard	<me	remembering	for	really	long	
periods	of	<me

RNNenc:	the	model	we’ve	
discussed	so	far 
RNNsearch:	uses	a8en<on

Bahdanau	et	al.	(2014)

Problems	with	Seq2seq	Models

‣ Unknown	words:

‣ In	fact,	we	don’t	want	to	encode	them,	we	want	a	way	of	directly	
looking	back	at	the	input	and	copying	them	(Pont-de-Buis)

‣ Encoding	these	rare	words	into	a	vector	space	is	really	hard

Aligned	Inputs

<s>						le						film			était			bon

the			movie		was			great

the	movie	was	great

le	film	était	bon

‣ Suppose	we	knew	the	source	and	
target	would	be	word-by-word	
translated

‣ In	that	case,	we	could	look	at	the	
corresponding	input	word	when	
transla<ng	—	might	improve	
handling	of	long	sentences!

le						film			était				bon			[STOP]

‣ How	can	we	achieve	this	
without	hardcoding	it?

A8en<on

‣ At	each	decoder	state,	
compute	a	distribu<on	over	
source	inputs	based	on	
current	decoder	state

the		movie		was			great <s> le

th
e
mo
vie wa

s
gre
atth

e
mo
vie wa

s
gre
at

… …

‣ Use	the	weighted	sum	of	input	
tokens	to	predict	output

Takeaways

‣ Rather	than	combining	syntax	and	seman<cs	like	in	CCG,	we	can	either	
parse	to	seman<c	representa<ons	directly	or	generate	them	with	seq2seq	
models

‣ Seq2seq	models	are	a	very	flexible	framework,	some	weaknesses	can	
poten<ally	be	patched	with	more	data

‣ How	to	fix	their	shortcomings?	Next	<me:	a8en<on,	copying,	and	
transformers

