CS388: Natural Language Processing

Lecture 16: Seq2seq II

Greg Durrett

Administrivia

- Nazneen Rajani (Salesforce) talk this Friday at 11am in 6.302 Leveraging Explanations for Performance and Generalization in NLP and RL
- ▶ Final project feedback posted
- Mini 2 results:
 - ▶ Sundara Ramachandran: 82.1%
 - ▶ Bidirectional LSTM, 2x256, 300d vectors, 4 epochs x 50 batch size
 - Neil Patil: 80.9%, Qinqin Zhang: 80.7% (CNN), Shivam Garg: 80.1%, Prateek Chaudhry: 80.0%, Abheek Ghosh: 80.0%
 - ▶ Fine-tuning embeddings helps, 100-300d LSTM

Recall: Seq2seq Model

- ▶ Generate next word conditioned on previous word as well as hidden state
- ▶ W size is |vocab| x |hidden state|, softmax over entire vocabulary

 $P(y_i|\mathbf{x}, y_1, \dots, y_{i-1}) = \operatorname{softmax}(W\bar{h})$ $P(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} P(y_i|\mathbf{x}, y_1, \dots, y_{i-1})$

Decoder has separate parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)

Recall: Seq2seq Training

- \blacktriangleright Objective: maximize $\sum_{(\mathbf{x},\mathbf{y})} \sum_{i=1}^n \log P(y_i^*|\mathbf{x},y_1^*,\dots,y_{i-1}^*)$
- ► Teacher forcing: feed the correct word regardless of model's prediction (most typical way to train)

Recall: Semantic Parsing as Translation

"what states border Texas" $\downarrow \\ \texttt{lambda } \texttt{x (state (x) and border (x , e89))))}$

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation
- ▶ No need to have an explicit grammar, simplifies algorithms
- Might not produce well-formed logical forms, might require lots of data

Jia and Liang (2015)

This Lecture

- ▶ Attention for sequence-to-sequence models
- ▶ Copy mechanisms for copying words to the output
- ▶ Transformer architecture

Attention

Problems with Seq2seq Models

▶ Encoder-decoder models like to repeat themselves:

Un garçon joue dans la neige → A boy plays in the snow **boy plays boy plays**

- Why does this happen?
 - ▶ Models trained poorly
 - LSTM state is not behaving as expected so it gets stuck in a "loop" of generating the same output tokens again and again
- Need some notion of input coverage or what input words we've translated

Problems with Seq2seq Models

Bad at long sentences: 1) a fixed-size hidden representation doesn't scale; 2) LSTMs still have a hard time remembering for really long periods of time

RNNenc: the model we've discussed so far

RNNsearch: uses attention

Bahdanau et al. (2014)

Problems with Seq2seq Models

▶ Unknown words:

en: The ecotax portico in Pont-de-Buis, ... [truncated] ..., was taken down on Thursday morning

fr: Le portique <u>écotaxe</u> de <u>Pont-de-Buis</u>, ... [truncated] ..., a été <u>démonté</u> jeudi matin

nn: Le \underline{unk} de \underline{unk} à \underline{unk} , ... [truncated] ..., a été pris le jeudi matin

- ▶ Encoding these rare words into a vector space is really hard
- In fact, we don't want to encode them, we want a way of directly looking back at the input and copying them (*Pont-de-Buis*)

Jean et al. (2015), Luong et al. (2015)

Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!
- Much less burden on the hidden state
- le film était bon [STOP]

 S le film était bon
 the movie was great

the movie was great

le film était bon

▶ How can we achieve this without hardcoding it?

Attention

▶ For each decoder state, input states

the movie was great

compute weighted sum of

$$c_i = \sum_j \alpha_{ij} h_j$$

Weighted sum of input hidden states (vector)

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

▶ Some function f(TBD)

cell; this one is

a little more convoluted and less standard

Attention

 $f(\bar{h}_i, h_j) = \tanh(W[\bar{h}_i, h_j])$

▶ Bahdanau+ (2014): additive

$$f(\bar{h}_i, h_j) = \bar{h}_i \cdot h_j$$

▶ Luong+ (2015): dot product

$$f(\bar{h}_i, h_j) = \bar{h}_i^\top W h_j$$

▶ Luong+ (2015): bilinear

Note that this all uses outputs of hidden layers

Luong et al. (2015)

Alternatives

▶ When do we compute attention? Can compute before or after RNN cell

Luong et al. (2015)

▶ Before RNN

Bahdanau et al. (2015)

What can attention do?

▶ Learning to copy — how might this work?

- LSTM can learn to count with the right weight matrix
- ▶ This is a kind of position-based addressing

Luong et al. (2015)

What can attention do?

▶ Learning to subsample tokens

- Need to count (for ordering) and also determine which tokens are in/ out
- ▶ Content-based addressing

Luong et al. (2015)

Attention

- Encoder hidden states capture contextual source word identity
- Decoder hidden states are now mostly responsible for selecting what to attend to
- Doesn't take a complex hidden state to walk monotonically through a sentence and spit out word-by-word translations

Results

- Machine translation: BLEU score of 14.0 on English-German -> 16.8 with attention, 19.0 with smarter attention (we'll come back to this later)
- ▶ Summarization/headline generation: bigram recall from 11% -> 15%
- ▶ Semantic parsing: ~30-50% accuracy -> 70+% accuracy on Geoquery

Luong et al. (2015) Chopra et al. (2016) Jia and Liang (2016)

Copying Input/Pointers

Unknown Words

en: The <u>ecotax</u> portico in <u>Pont-de-Buis</u>, ... [truncated] ..., was taken down on Thursday morning fr: Le <u>portique</u> <u>écotaxe</u> de <u>Pont-de-Buis</u>, ... [truncated] ..., a été <u>démonté</u> jeudi matin

nn: Le \underline{unk} de \underline{unk} à \underline{unk} , ... [truncated] ..., a été pris le jeudi matin

▶ Want to be able to copy named entities like Pont-de-Buis

$$P(y_i|\mathbf{x},y_1,\dots,y_{i-1}) = \operatorname{softmax}(W[c_i;\bar{h}_i])$$
 from attention from attention hidden state

 Problems: target word has to be in the vocabulary, attention + RNN need to generate good embedding to pick it Jean et al. (2015), Luong et al. (2015)

Pointer Generator Mixture Models

 \blacktriangleright Define the decoder model as a mixture model of the $P_{\rm vocab}$ and $P_{\rm pointer}$ models (previous slide)

$$P(y_i|\mathbf{x}, y_1, \dots, y_{i-1}) = P(\text{copy})P_{\text{pointer}} + (1 - P(\text{copy}))P_{\text{vocab}}$$

- ▶ Predict P(copy) based on decoder state, input, etc.
- Marginalize over copy variable during training and inference
- Model will be able to both generate and copy, flexibly adapt between the two

Copying

en: The ecotax portico in Pont-de-Buis, ... [truncated] ...

fr: Le portique écotaxe de Pont-de-Buis, ... [truncated]

nn: Le <u>unk</u> de <u>unk</u> à <u>unk</u>, ... [truncated] ..., a été pris

- ▶ Some words we may want to copy may not be in the fixed output vocab (*Pont-de-Buis*)
- Solution: expand the vocabulary dynamically. New words can only be predicted by copying (always 0 probability under P_{vocab})

Results

	GEO	ATIS
No Copying	74.6	69.9
With Copying	85.0	76.3

- ▶ For semantic parsing, copying tokens from the input (*texas*) can be very useful
- ▶ Copying typically helps a bit, but attention captures most of the benefit. However, vocabulary expansion is critical for some tasks (machine translation)

Jia and Liang (2016)

Transformers

Sentence Encoders

LSTM abstraction: maps each vector in a sentence to a new, context-aware vector

▶ CNNs do something similar with filters

Attention can give us a third way to do this

Vaswani et al. (2017)

Self-Attention

Assume we're using GloVe — what do we want our neural network to do?

The ballerina is very excited that she will dance in the show.

- What words need to be contextualized here?
 - Pronouns need to look at antecedents
 - Ambiguous words should look at context
 - Words should look at syntactic parents/children
- Problem: LSTMs and CNNs don't do this

Vaswani et al. (2017)

Self-Attention

Want:

The ballerina is very excited that she will dance in the show.

▶ LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

▶ To appropriately contextualize embeddings, we need to pass information over long distances dynamically for each word

Vaswani et al. (2017)

Self-Attention

► Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{i=1}^n lpha_{i,j} x_j$ vector = sum of scalar * vector

Vaswani et al. (2017)

Multiple "heads" analogous to different convolutional filters. Use parameters W_k and V_k to get different attention values + transform vectors

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^{\top} W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

What can self-attention do?

The ballerina is very excited that she will dance in the show.

0 0.1 0 0 0 0 0 0.5 0 0.	1 0

- ▶ Attend nearby + to semantically related terms
- This is a demonstration, we will revisit what these models actually learn when we discuss BERT
- Why multiple heads? Softmaxes end up being peaked, single distribution cannot easily put weight on multiple things

Vaswani et al. (2017)

Transformer Uses

- ▶ Supervised: transformer can replace LSTM as encoder, decoder, or both; will revisit this when we discuss MT
- ▶ Unsupervised: transformers work better than LSTM for unsupervised pre-training of embeddings: predict word given context words
- BERT (Bidirectional Encoder Representations from Transformers): pretraining transformer language models similar to ELMo
- ➤ Stronger than similar methods, SOTA on ~11 tasks (including NER 92.8 F1)

Takeaways

- ▶ Attention is very helpful for seq2seq models
- ▶ Explicitly copying input can be beneficial as well
- ▶ Transformers are strong models we'll come back to later
- ▶ We've now talked about most of the important core tools for NLP
- ▶ Rest of the class is more focused on applications: translation, information extraction, QA, and more, then other applications