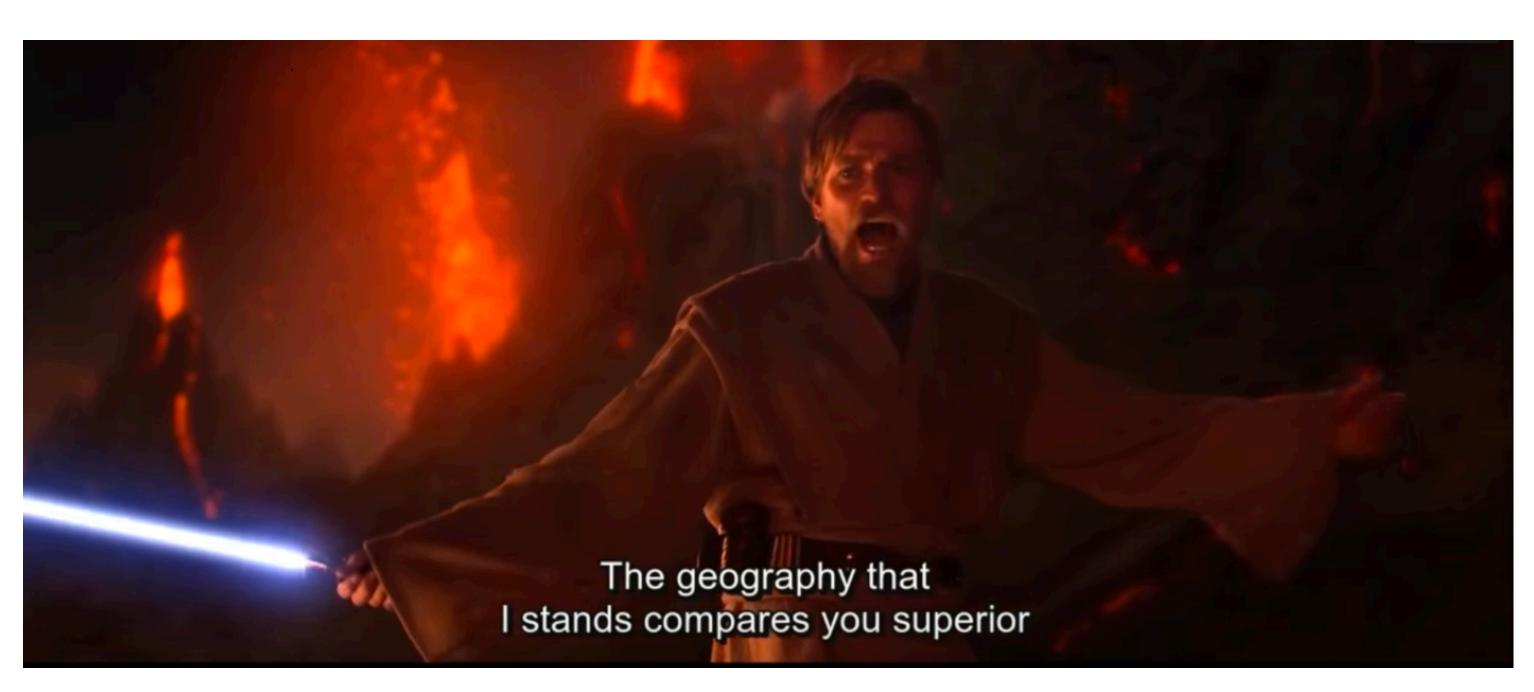
CS388: Natural Language Processing

Lecture 17:
Machine
Translation 1

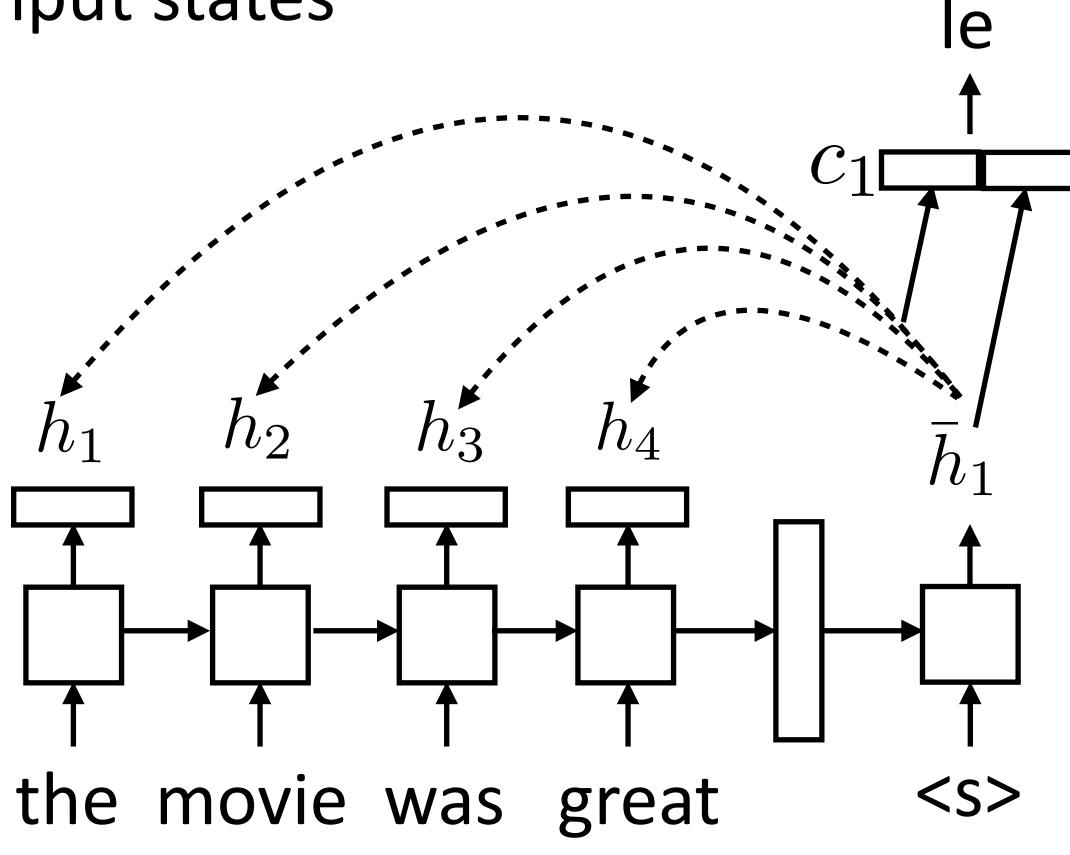


Star Wars The Third Gathers: The Backstroke of the West (subtitles machine translated from Chinese)

Some slides adapted from Dan Klein, UC Berkeley

Recall: Attention

For each decoder state, compute weighted sum of input states ▶ No attn: $P(y_i|\mathbf{x}, y_1, ..., y_{i-1}) = \text{softmax}(W\bar{h}_i)$



$$P(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) = \operatorname{softmax}(W[c_i;\bar{h}_i])$$

$$c_i = \sum_j \alpha_{ij} h_j$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

$$e_{ij} = f(\bar{h}_i, h_j)$$

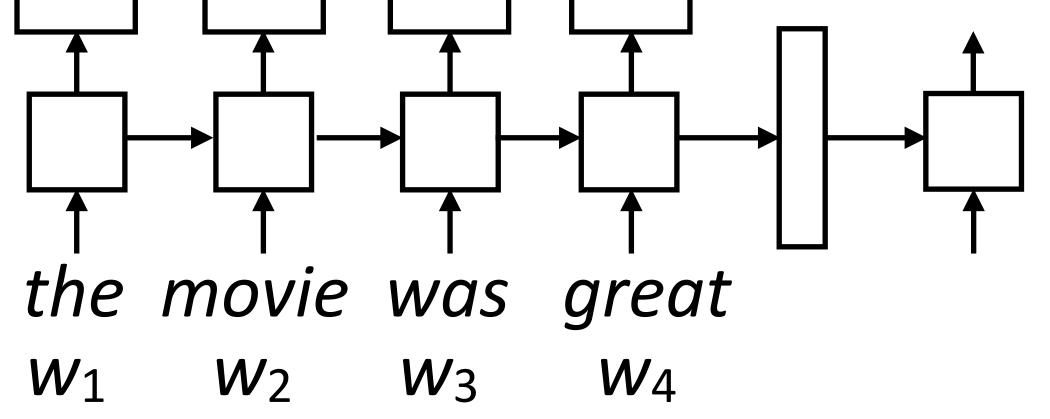
Some function
f (TBD)

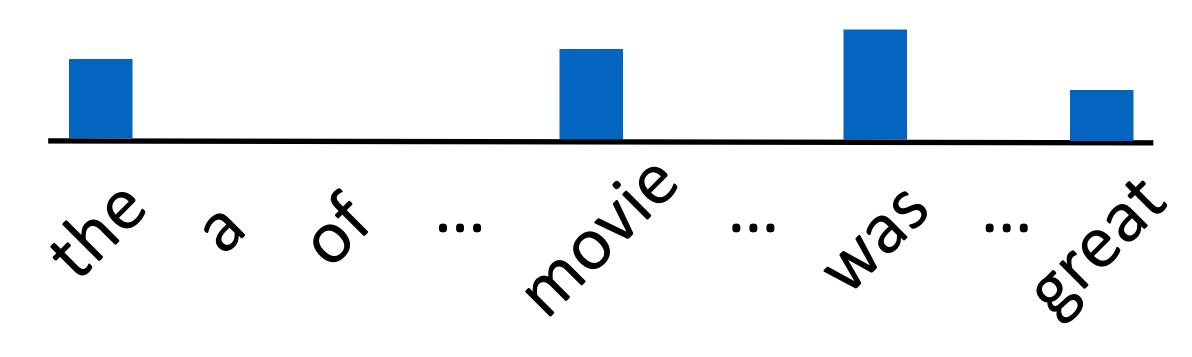
Recall: Pointer Networks

$$P(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) = \operatorname{softmax}(W[c_i;\bar{h}_i])$$

- Standard decoder (P_{vocab}): softmax $x^e \circ \delta \cdots \wedge y^e \cdots y^e$ over vocabulary, all words get >0 prob
- Pointer network: predict from source words instead of target vocab

$$P_{ ext{pointer}}(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) \propto \left\{ egin{array}{l} h_j^ op V ar{h}_i & ext{if } y_i = w_j \\ \mathbf{0} & ext{otherwise} \end{array} \right.$$





This Lecture

- MT basics, evaluation
- Word alignment
- Language models
- Phrase-based decoders
- Syntax-based decoders (probably next time)

MT Basics

MT

People's Daily, August 30, 2017

Trump Pope family watch a hundred years a year in the White House balcony

MT Ideally

- I have a friend => ∃x friend(x,self) => J'ai un ami
 J'ai une amie (friend is female)
 - May need information you didn't think about in your representation
 - Hard for semantic representations to cover everything
- Everyone has a friend => $\exists x \forall y \text{ friend}(x,y) => Tous a un amise to the second state of the second st$
 - ▶ Can often get away without doing all disambiguation same ambiguities may exist in both languages

MT in Practice

Bitext: this is what we learn translation systems from

Je fais un bureau l'm making a desk

Je fais une soupe I'm making soup

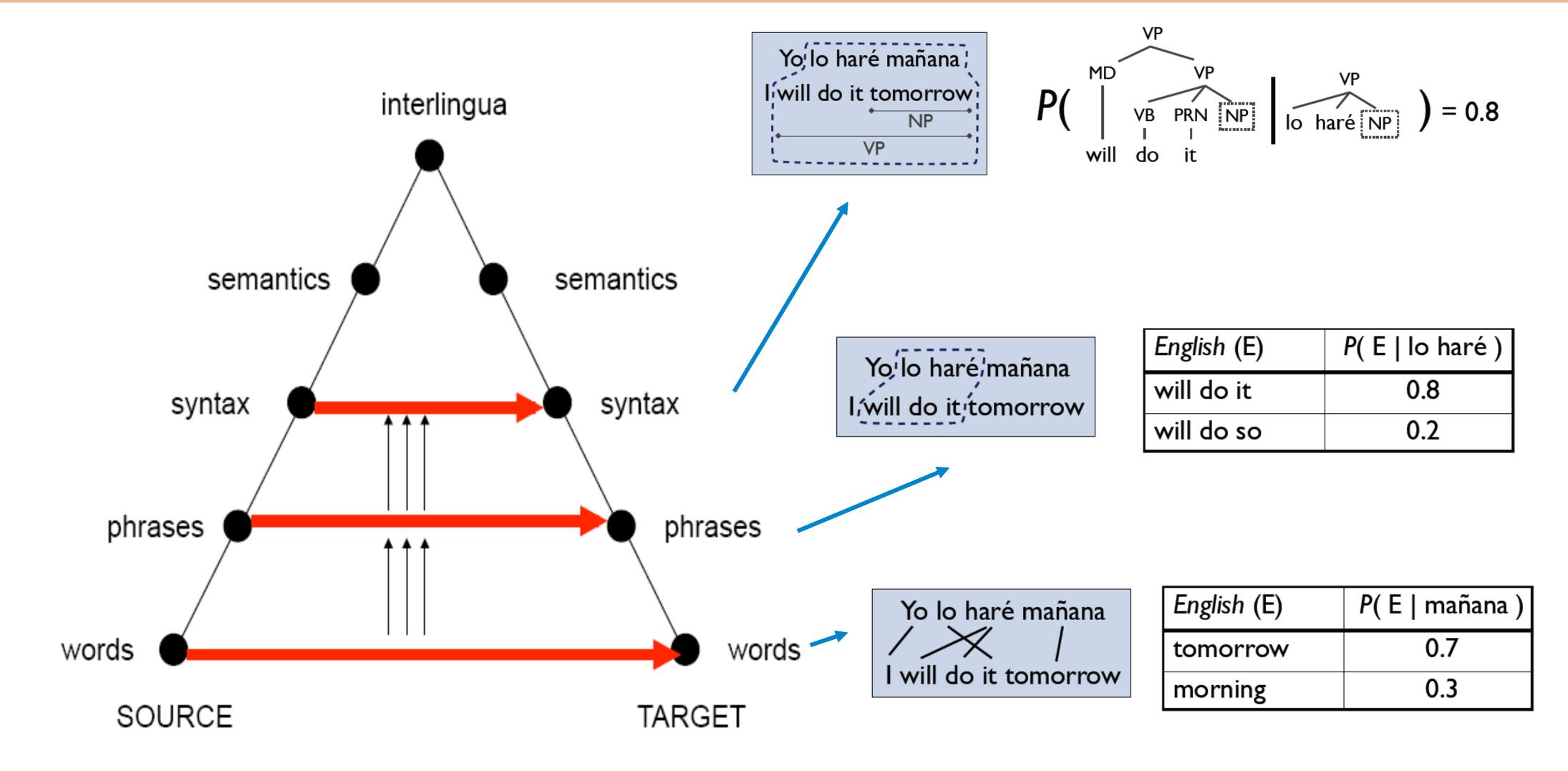
Je fais un bureau I make a desk

Qu'est-ce que tu fais? What are you making?

What are some translation pairs you can identify? How do you know?

What makes this hard? Not word-to-word translation
 Multiple translations of a single source (ambiguous)

Levels of Transfer: Vauquois Triangle



Today: mostly phrase-based, some syntax

Slide credit: Dan Klein

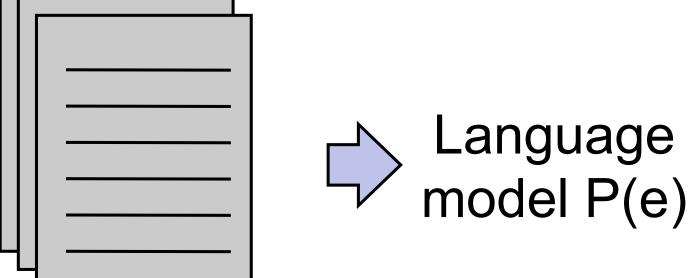
Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
 - ▶ How to identify phrases? Word alignment over source-target bitext
 - How to stitch together? Language model over target language
 - Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)

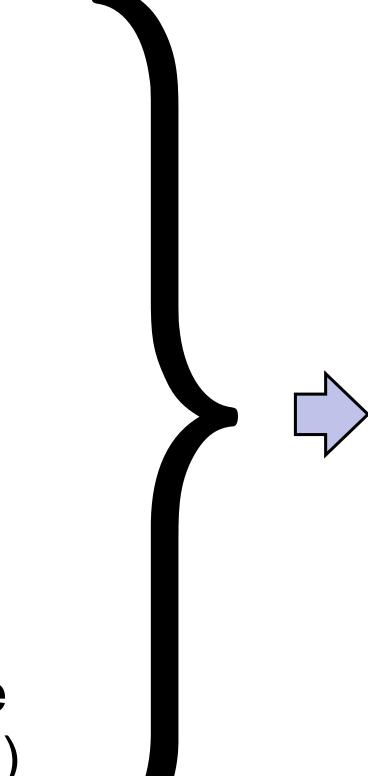
Phrase-Based MT

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9

Phrase table P(f|e)



Unlabeled English data



$$P(e|f) \propto P(f|e)P(e)$$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- ▶ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram *precision* vs. a reference, multiplied by brevity penalty (penalizes short translations)

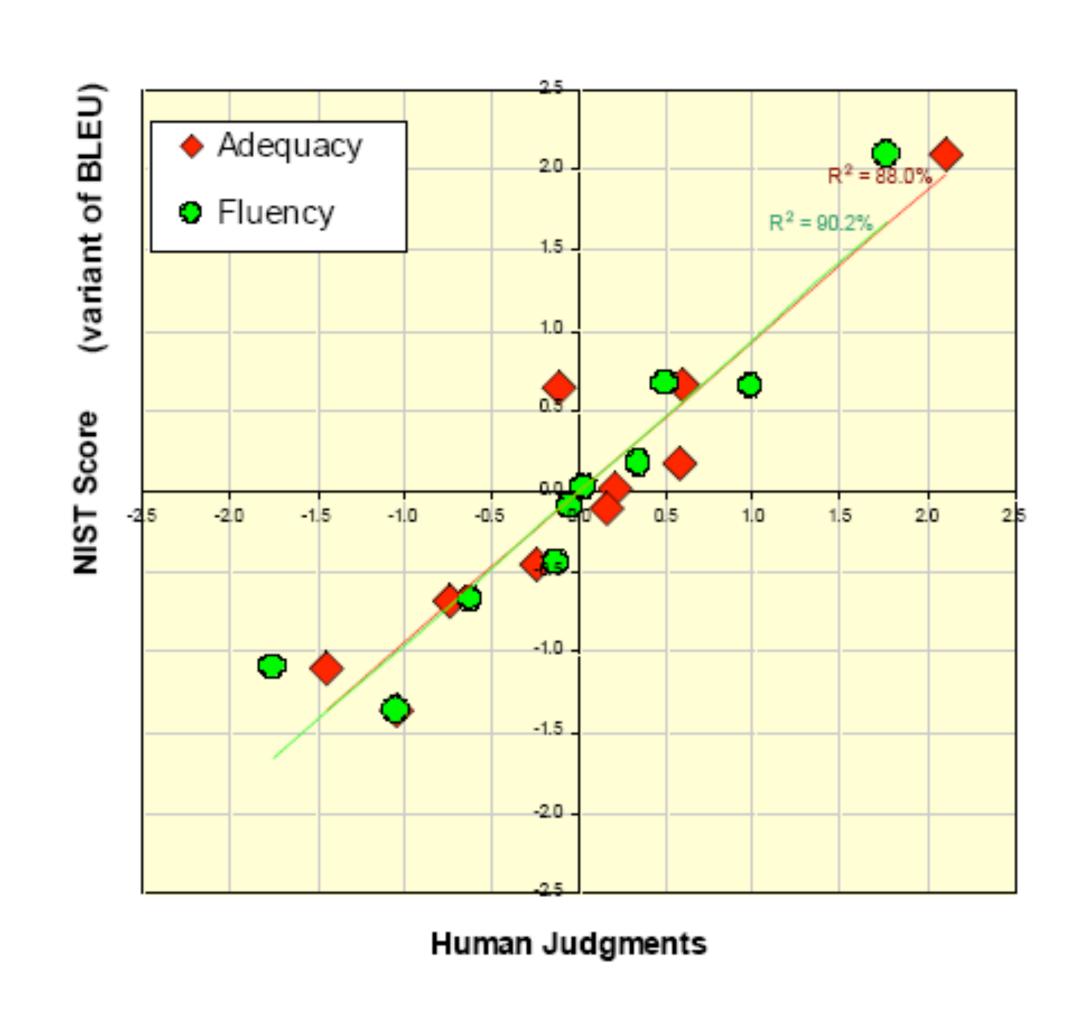
BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Typically $n = 4$, $w_i = 1/4$

$$\mathrm{BP} = \left\{ \begin{array}{ll} 1 & \mathrm{if} \ c > r \\ e^{(1-r/c)} & \mathrm{if} \ c \leq r \end{array} \right. \quad \text{r = length of reference} \\ \mathrm{c = length of prediction} \end{array}$$

Does this capture fluency and adequacy?

BLEU Score

- At a *corpus* level, BLEU correlates pretty well with human judgments
- Better methods with human-in-the-loop
- If you're building real MT systems, you do user studies. In academia, you mostly use BLEU



Word Alignment

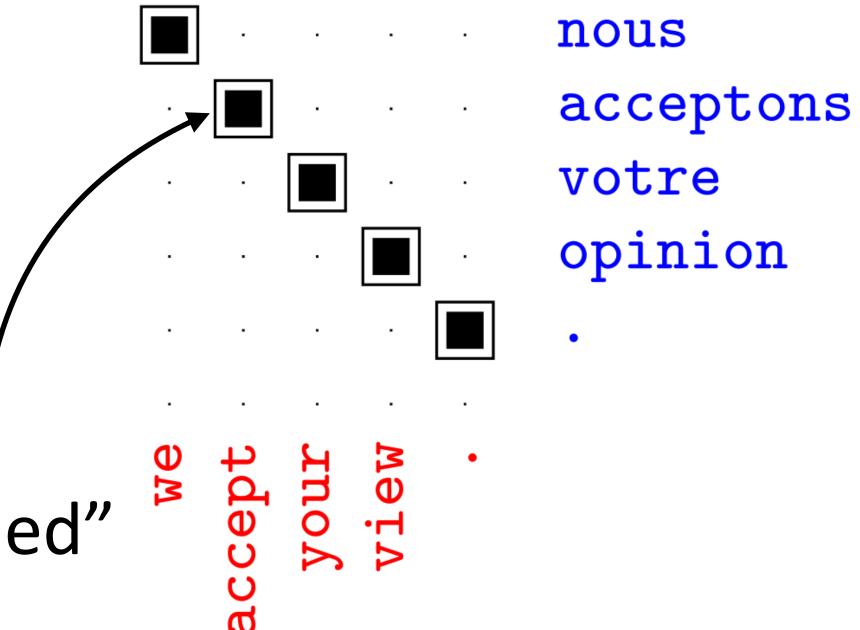
Word Alignment

Input: a bitext, pairs of translated sentences

nous acceptons votre opinion . | | we accept your view

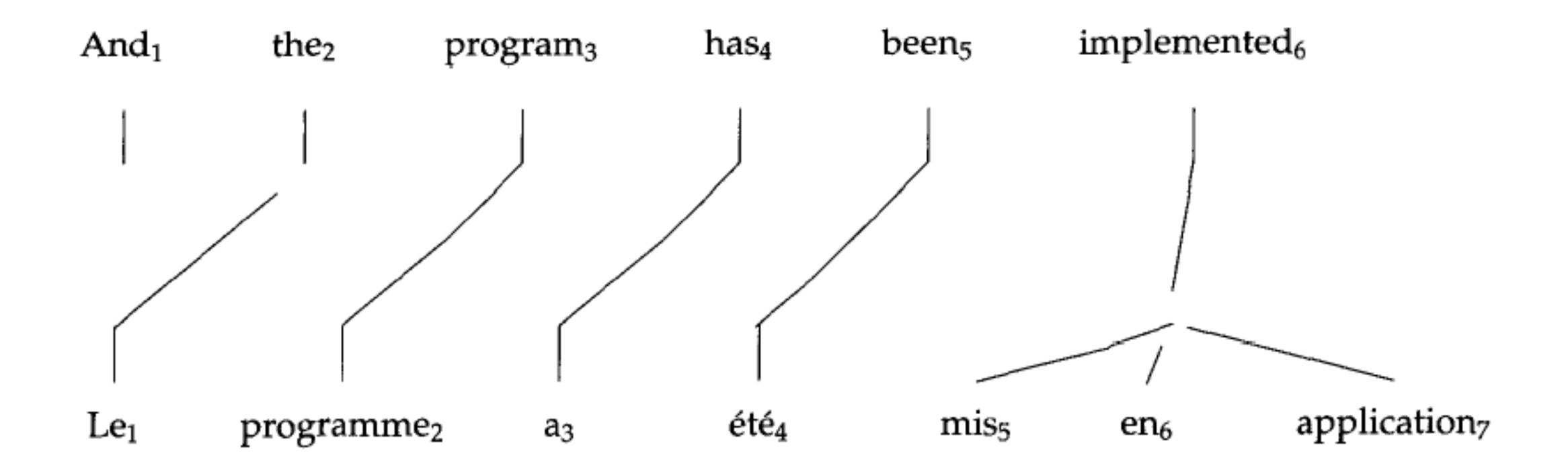
nous allons changer d'avis | | | we are going to change our minds

- Output: alignments between words in each sentence
 - We will see how to turn these into phrases



"accept and acceptons are aligned" \$\frac{1}{2} \frac{1}{2} \frac{

1-to-Many Alignments



Word Alignment

▶ Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model

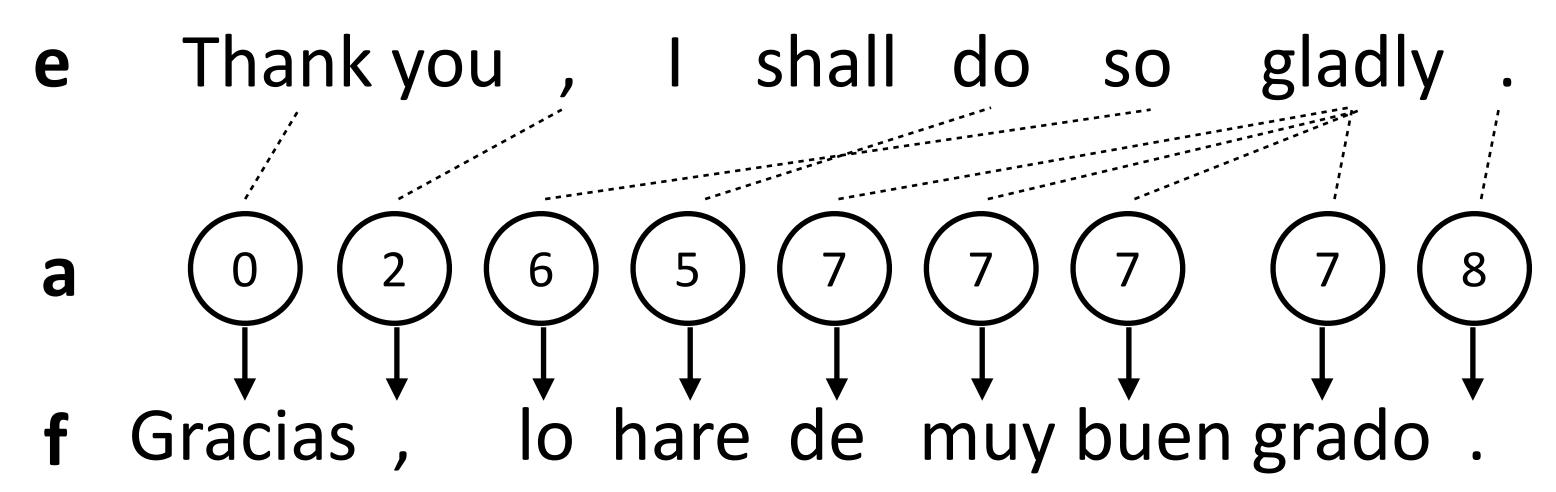
Latent variable model:
$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}|\mathbf{a}, \mathbf{e}) P(\mathbf{a})$$

Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

Each French word is aligned to at most one English word

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod_{i=1}^{n} P(f_i | e_{a_i}) P(a_i)$$



- Set P(a) uniformly (no prior over good alignments)
- $ightharpoonup P(f_i|e_{a_i})$: word translation probability table

HMM for Alignment

Sequential dependence between a's to capture monotonicity

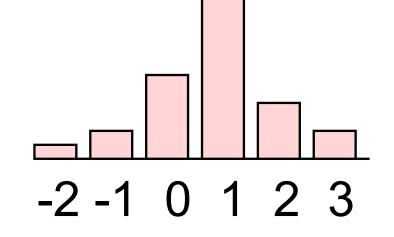
$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i|a_{i-1})$$

e Thank you, I shall do so gladly.

a 0+2+6+5+7+7+7+8

f Gracias, lo hare de muy buen grado.

▶ Alignment dist parameterized by jump size: $P(a_j - a_{j-1})$ ——



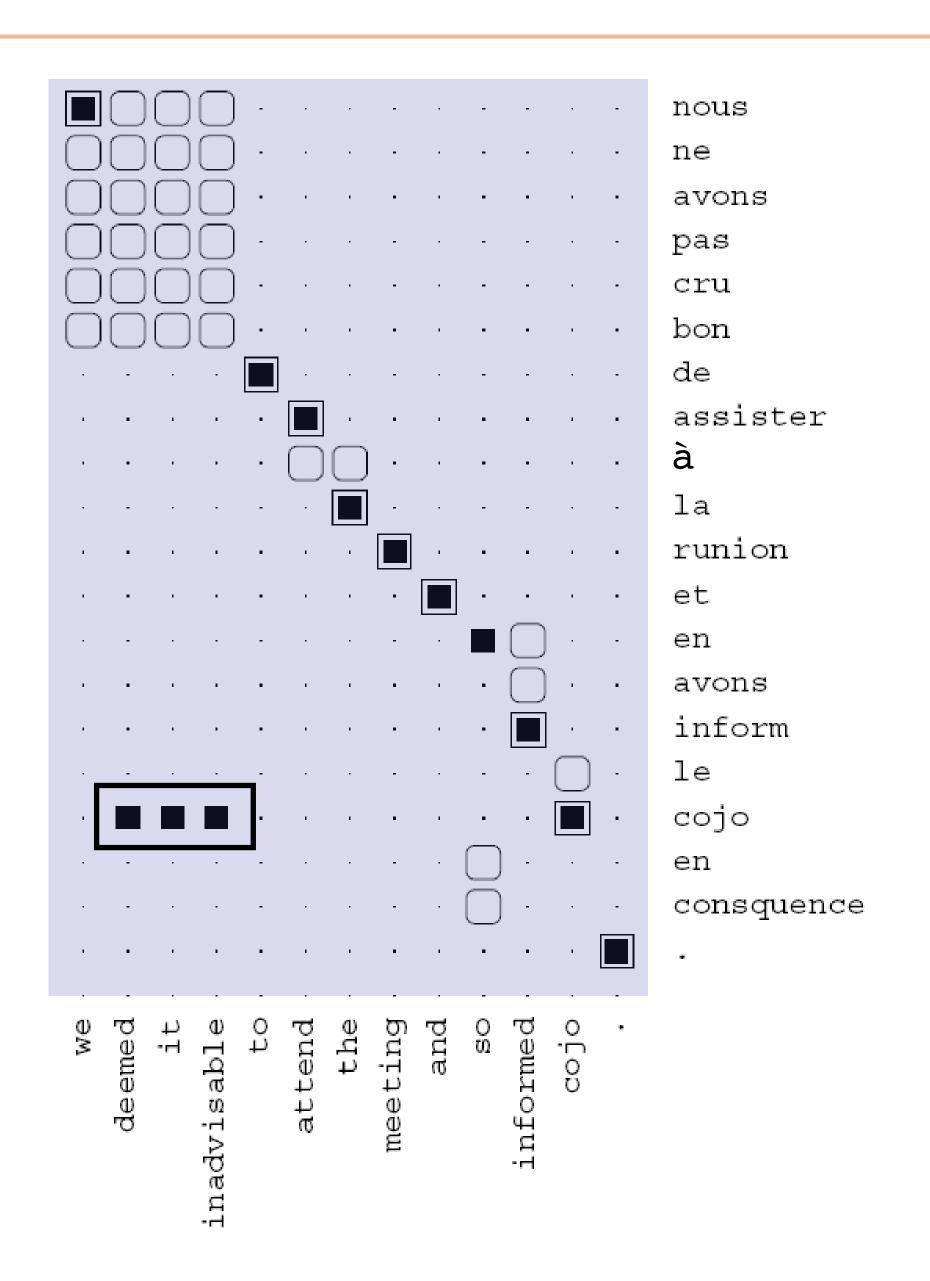
 $P(f_i|e_{a_i})$: same as before

Vogel et al. (1996)

HMM Model

Which direction is this?

- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (garbage collection)



Evaluating Word Alignment

"Alignment error rate": use labeled alignments on small corpus

Model	AER
Model 1 INT	19.5
HMM E→F	11.4
HMM F→E	10.8
HMMAND	7.1
HMM INT	4.7
GIZA M4 AND	6.9

Run Model 1 in both directions and intersect "intelligently"

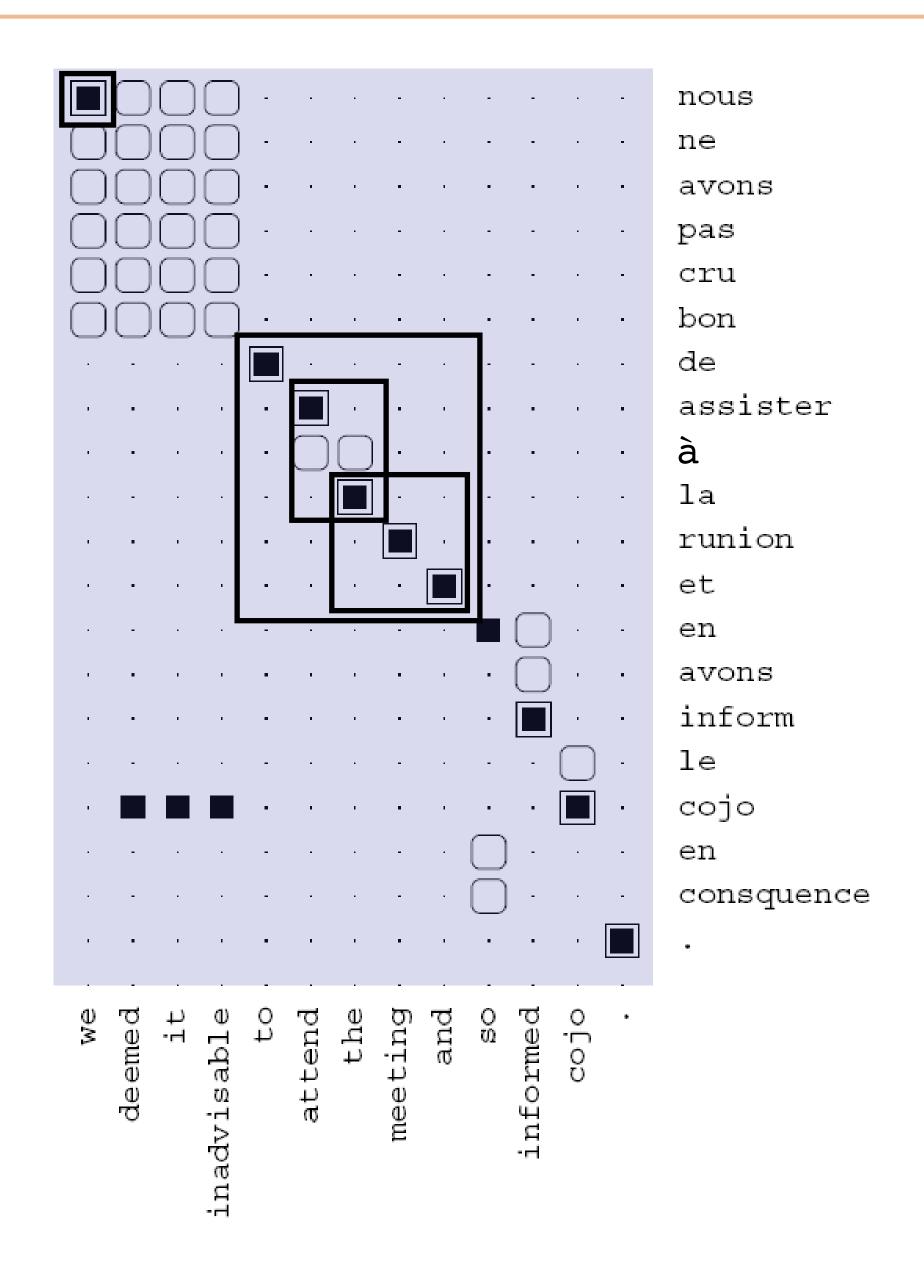
Run HMM model in both directions and intersect "intelligently"

Phrase Extraction

Find contiguous sets of aligned words in the two languages that don't have alignments to other words

```
d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we
```

Lots of phrases possible, count across all sentences and score by frequency



Decoding

Recall: n-gram Language Models

$$P(\mathbf{w}) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots$$

• *n*-gram models: distribution of next word is a multinomial conditioned on previous *n*-1 words $P(w_i|w_1,\ldots,w_{i-1})=P(w_i|w_{i-n+1},\ldots,w_{i-1})$

I visited San ____ put a distribution over the next word

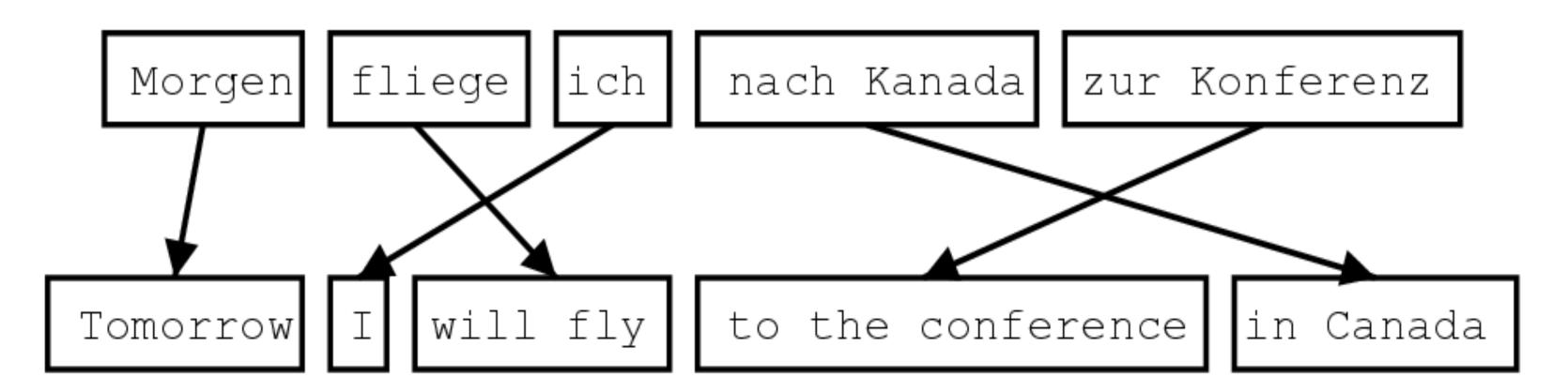
$$P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})}$$

Maximum likelihood estimate of this 3-gram probability from a corpus

▶ Typically use ~5-gram language models for translation

Phrase-Based Decoding

- Inputs:
 - n-gram language model: $P(e_i|e_1,\ldots,e_{i-1}) \approx P(e_i|e_{i-n-1},\ldots,e_{i-1})$
 - ▶ Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- ▶ What we want to find: **e** produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:



Phrase lattices are big!

这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	员	
the	7 people	including	by some		and	the russian	the	the astronauts		
it	7 people inc	luded	by france		and the	the russian	<u> </u>	international astronautical	astronautical of rapporteur .	
this	7 out	including the	from	the french	and the	russian	the fiftl	h		
these	7 among	including from		the french a	and	of the russian	of	space	members	
that	7 persons	including from	the	of france	and to	russian	of the	aerospace	members .	A: :
	7 include		from the	of france and rus		russian	9	astronauts		. the
	7 numbers include		from france	a france a		and russian		ronauts who		. 25
	7 populations include thos		those from fran	france and russian		an		astronauts.		
	7 deportees included		come from	france	and ru	ssia	in	astronautical	personnel	;
	7 philtrum including those from		e from	france and russia		a space	ce member			
		including representatives from		france and the russia		\$0. ************************************	astronaut			
		include	came from	france an	nd russia by co		by cosr	osmonauts		
		include represe	clude representatives from		french and russia		cosmonauts			
		include came from franc		ce and russia 's			cosmonauts.			
		includes	coming from	french and	russia 's		cosmonaut		99	
				french and	russian		's	astronavigation	member .	
				french	and russia		astro	nauts		
					and russia 's				special rapporteur	
					, and	russia			rapporteur	
					, and russia				rapporteur.	
					, and russia		50		t verben	
					or	russia 's				

Slide credit: Dan Klein

Phrase-Based Decoding

Input

lo haré rápidamente.

Translations

I'll do it quickly .

quickly I'll do it . and considers reorderings.

The decoder...

tries different segmentations,

translates phrase by phrase,

$$\arg \max_{\mathbf{e}} \left[P(\mathbf{f}|\mathbf{e}) \cdot P(\mathbf{e}) \right]$$

Decoding objective (for 3-gram LM)

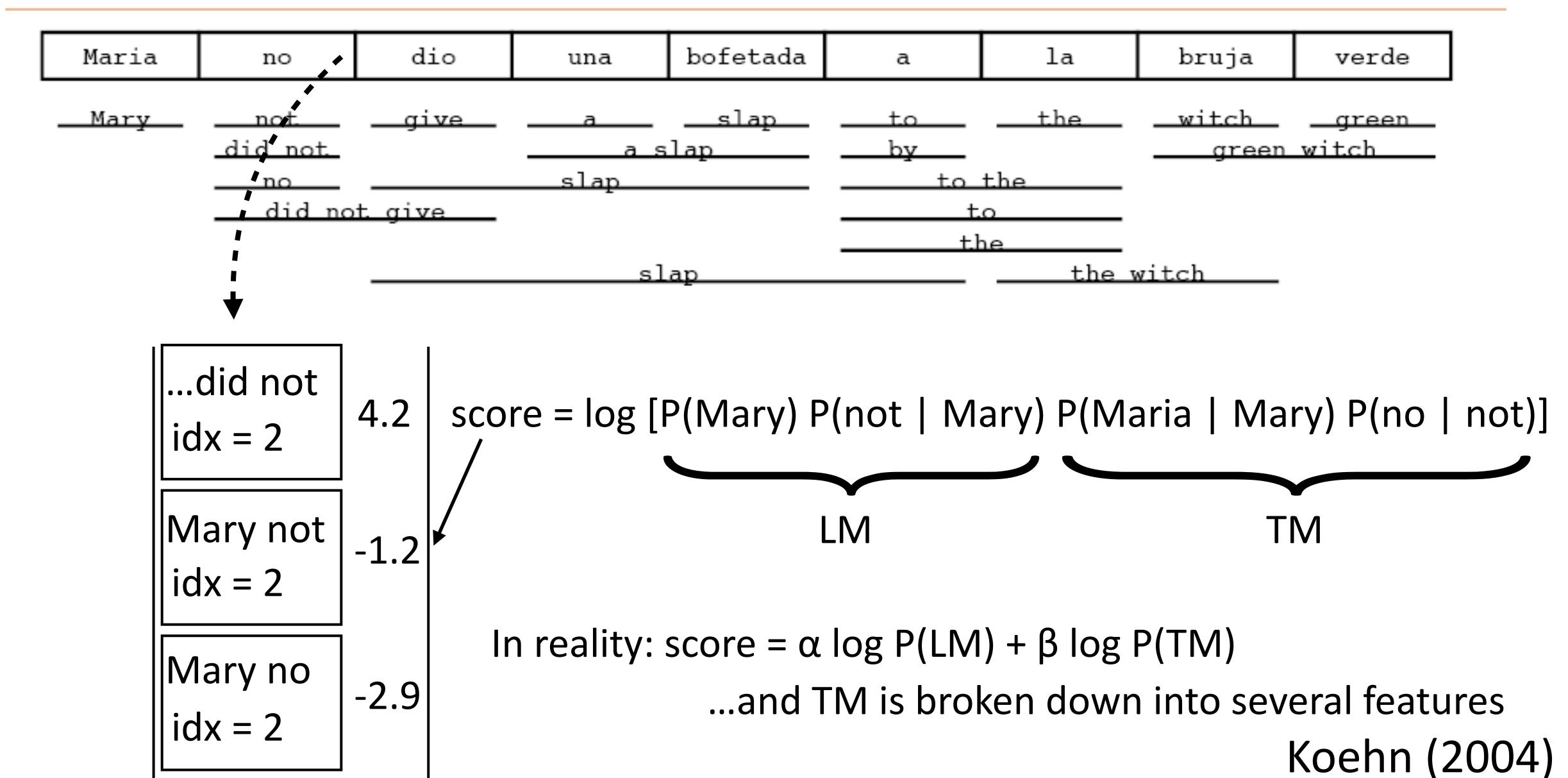
$$\arg \max_{\mathbf{e}} \left[\prod_{\langle \bar{e}, \bar{f} \rangle} P(\bar{f}|\bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i|e_{i-1}, e_{i-2}) \right]$$

Slide credit: Dan Klein

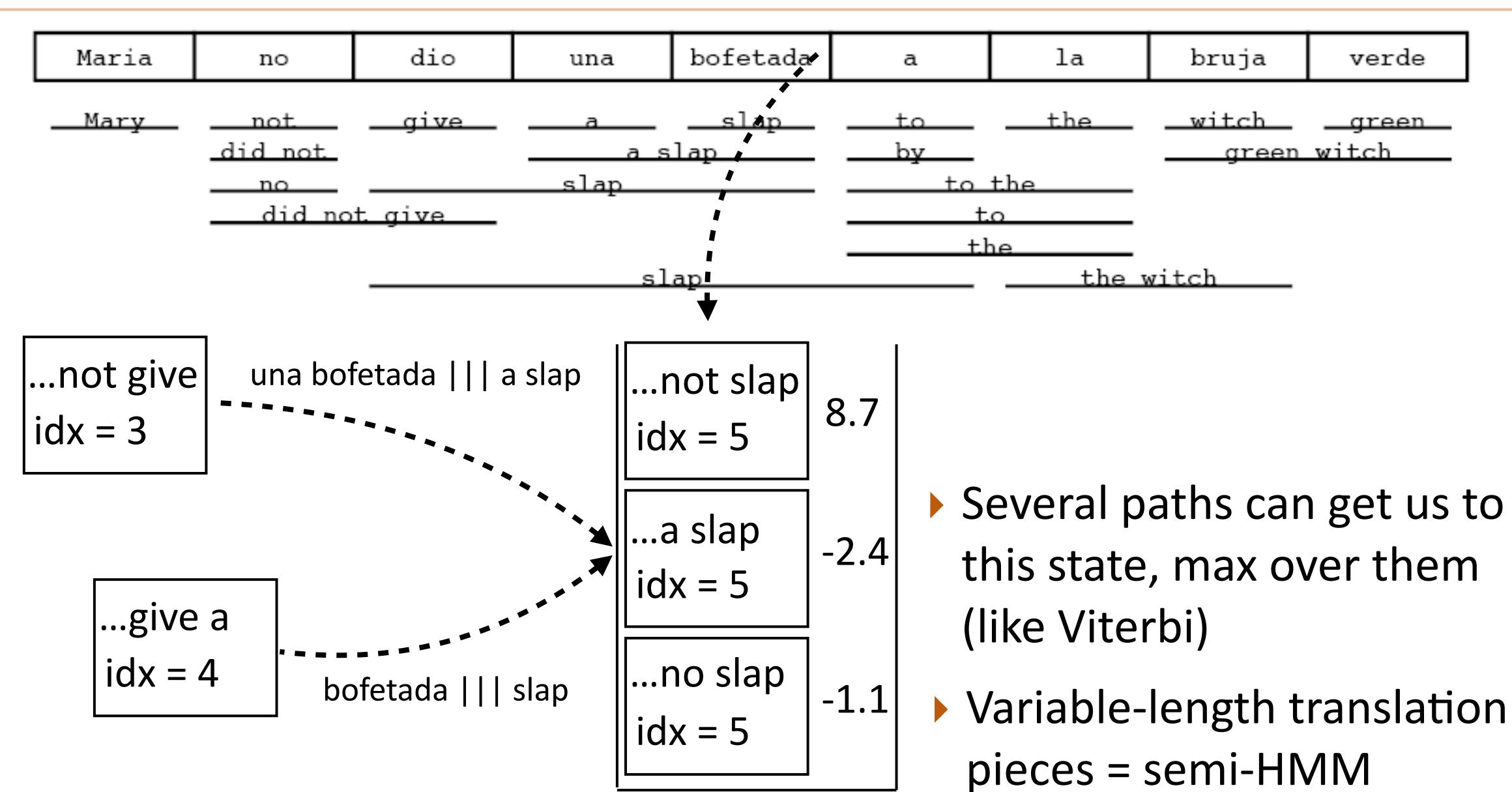
Monotonic Translation

- ▶ If we translate with beam search, what state do we need to keep in the beam?
 - What have we translated so far? $\arg\max_{\mathbf{e}}\left|\prod_{\langle \bar{e},\bar{f}\rangle}P(\bar{f}|\bar{e})\cdot\prod_{i=1}^{|\mathbf{e}|}P(e_i|e_{i-1},e_{i-2})\right|$
 - What words have we produced so far?
 - ▶ When using a 3-gram LM, only need to remember the last 2 words!

Monotonic Translation



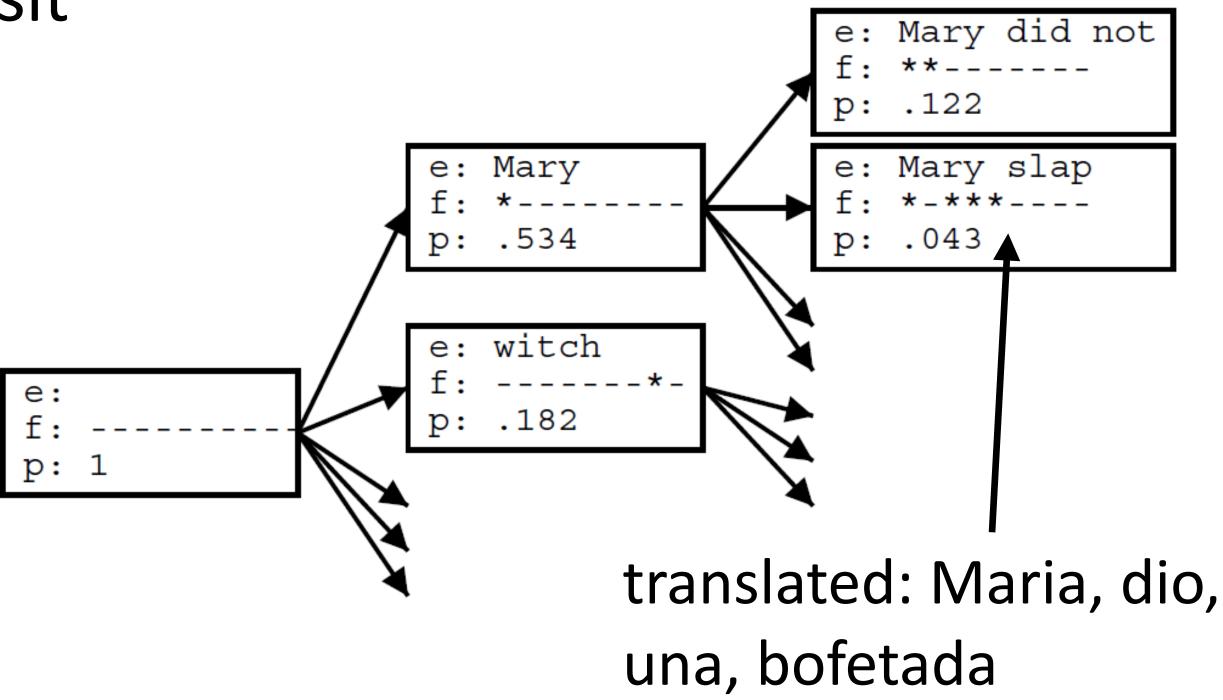
Monotonic Translation



Non-Monotonic Translation

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary_	not_ did_not_	<u>give</u>	a slap		t.o by	t.he	wit.ch_ green	green_ witch
	noslap_did_not_give				t.	t.he		
			sl	ap		the t	witch	

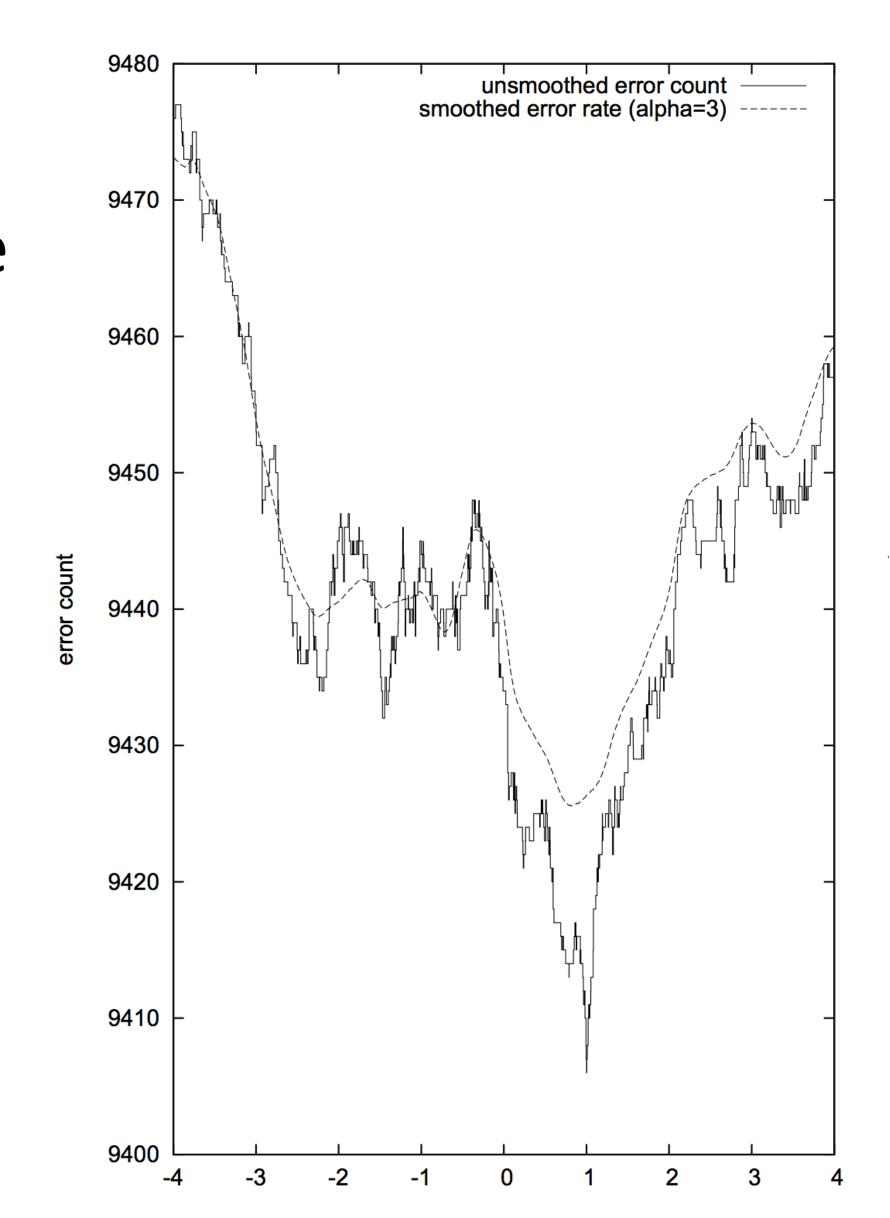
- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't
- Big enough phrases already capture lots of reorderings, so this isn't as important as you think



Training Decoders

score = $\alpha \log P(LM) + \beta \log P(TM)$...and TM is broken down into several feature

- Usually 5-20 feature weights to set, want to optimize for BLEU score which is not differentiable
- MERT (Och 2003): decode to get 1000best translations for each sentence in a small training set (<1000 sentences), do line search on parameters to directly optimize for BLEU

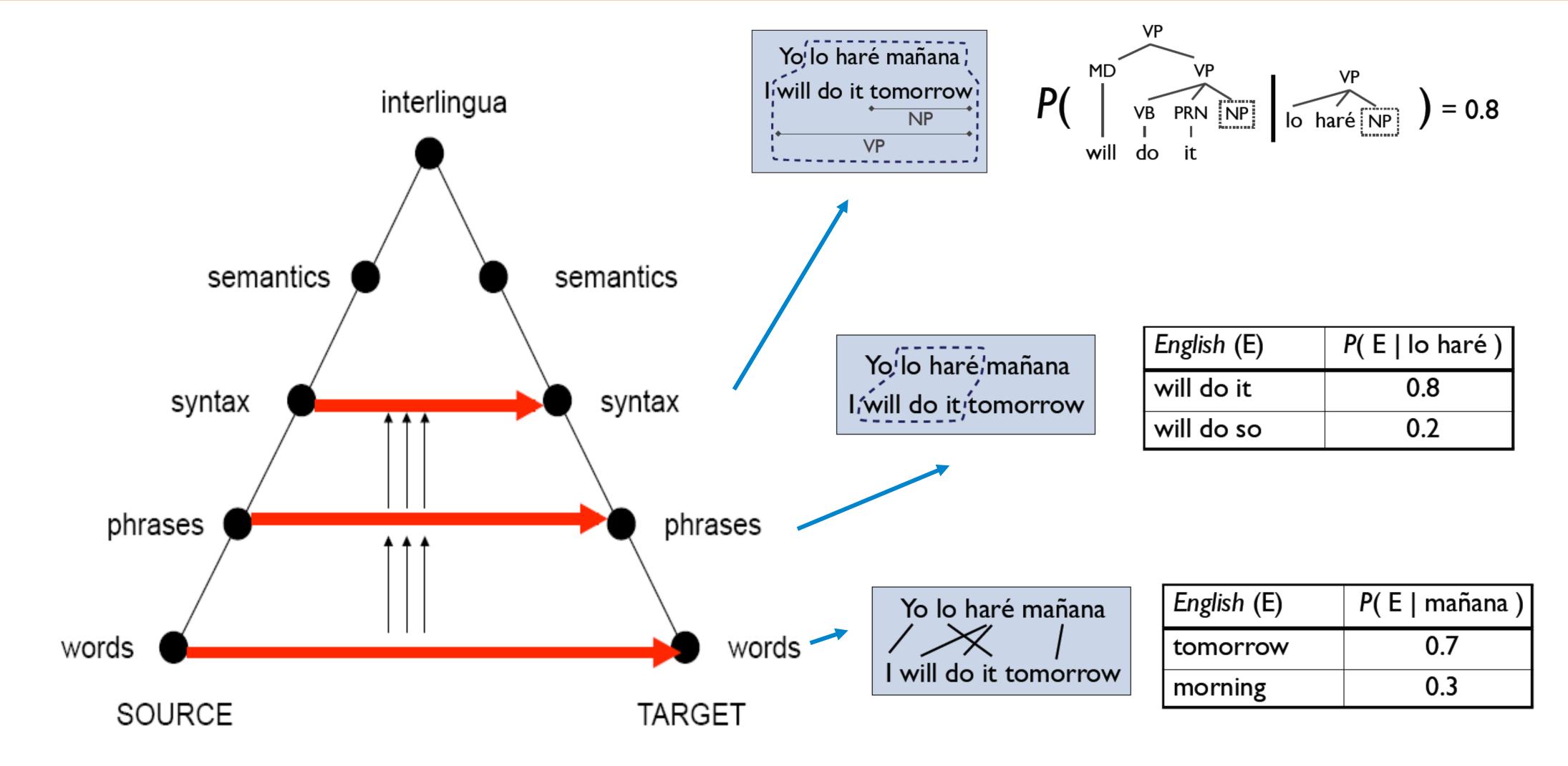


Moses

- ▶ Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 - Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
 - ▶ Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2015
- Next time: results on these and comparisons to neural methods

Syntax

Levels of Transfer: Vauquois Triangle



Is syntax a "better" abstraction than phrases?

Slide credit: Dan Klein

Syntactic MT

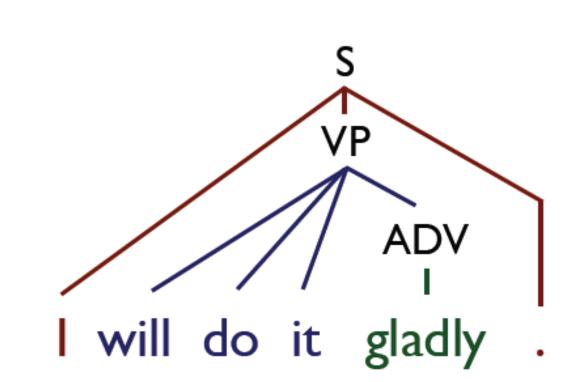
Rather than use phrases, use a synchronous context-free grammar

```
NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]
DT \rightarrow [the, la]
DT \rightarrow [the, le]
NP
NP
NP
NP
NN \rightarrow [car, voiture]
JJ \rightarrow [yellow, jaune]
DT_1 JJ_2 NN_3 DT_1 NN_3 JJ_2
the yellow car la voiture jaune
```

- Translation = parse the input with "half" of the grammar, read off the other half
- Assumes parallel syntax up to reordering

Syntactic MT

Input S VP ADV lo haré de muy buen grado .



Output

- Use lexicalized rules, look like "syntactic phrases"
- Leads to HUGE grammars, parsing is slow

Grammar

```
S → 〈 VP .; I VP . 〉 OR S → 〈 VP .; you VP . 〉

VP → 〈 lo haré ADV ; will do it ADV 〉

S → 〈 lo haré ADV .; I will do it ADV . 〉

ADV → 〈 de muy buen grado ; gladly 〉

Slide credit: Dan Klein
```

Takeaways

- Phrase-based systems consist of 3 pieces: aligner, language model, decoder
 - HMMs work well for alignment
 - N-gram language models are scalable and historically worked well
 - Decoder requires searching through a complex state space
- Lots of system variants incorporating syntax
- Next time: neural MT