CS388: Natural Language Processing

Lecture 18:
Machine
Translation 2

Greg Durrett

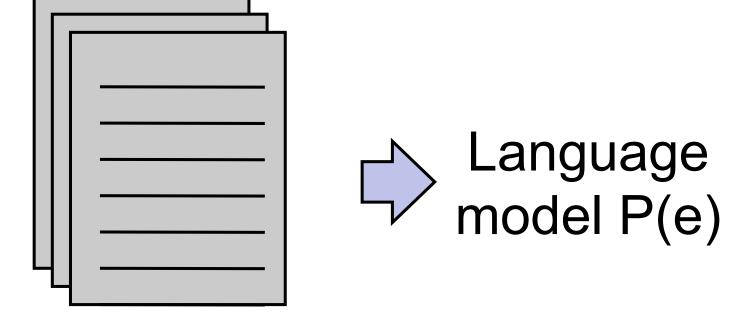
Administrivia

Project 2 due in one week

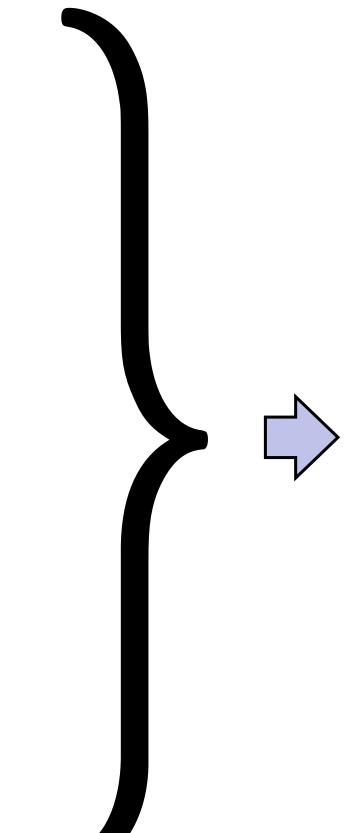
Recall: Phrase-Based MT

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
...

Phrase table P(f|e)



Unlabeled English data



$$P(e|f) \propto P(f|e)P(e)$$

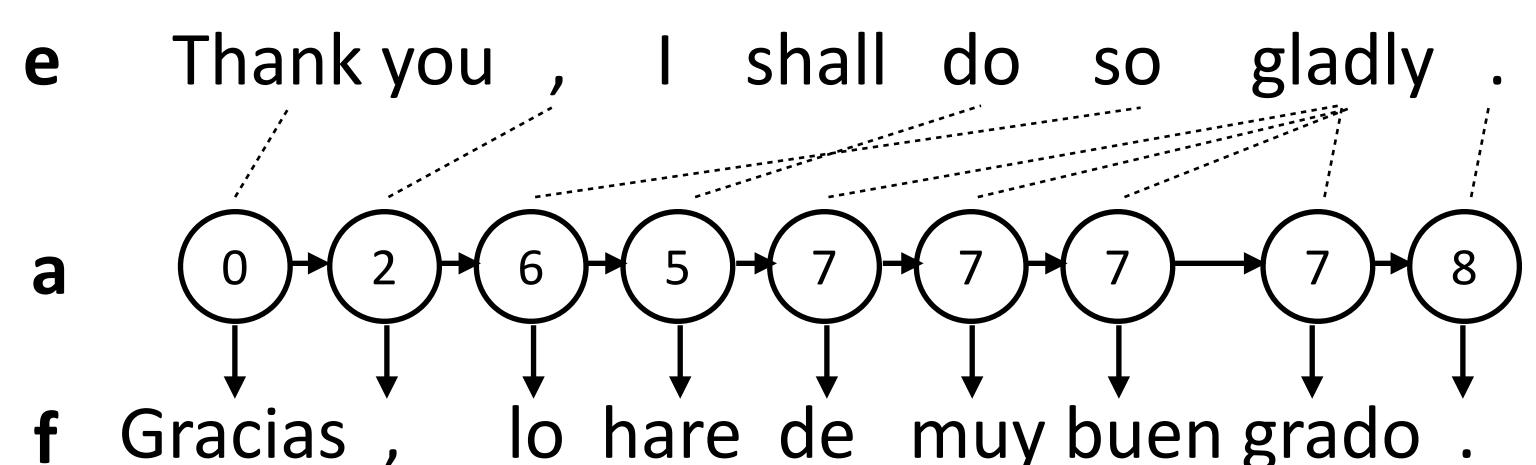
Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

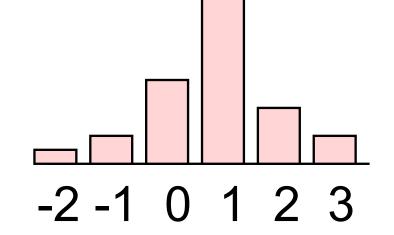
Recall: HMM for Alignment

Sequential dependence between a's to capture monotonicity

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i|a_{i-1})$$

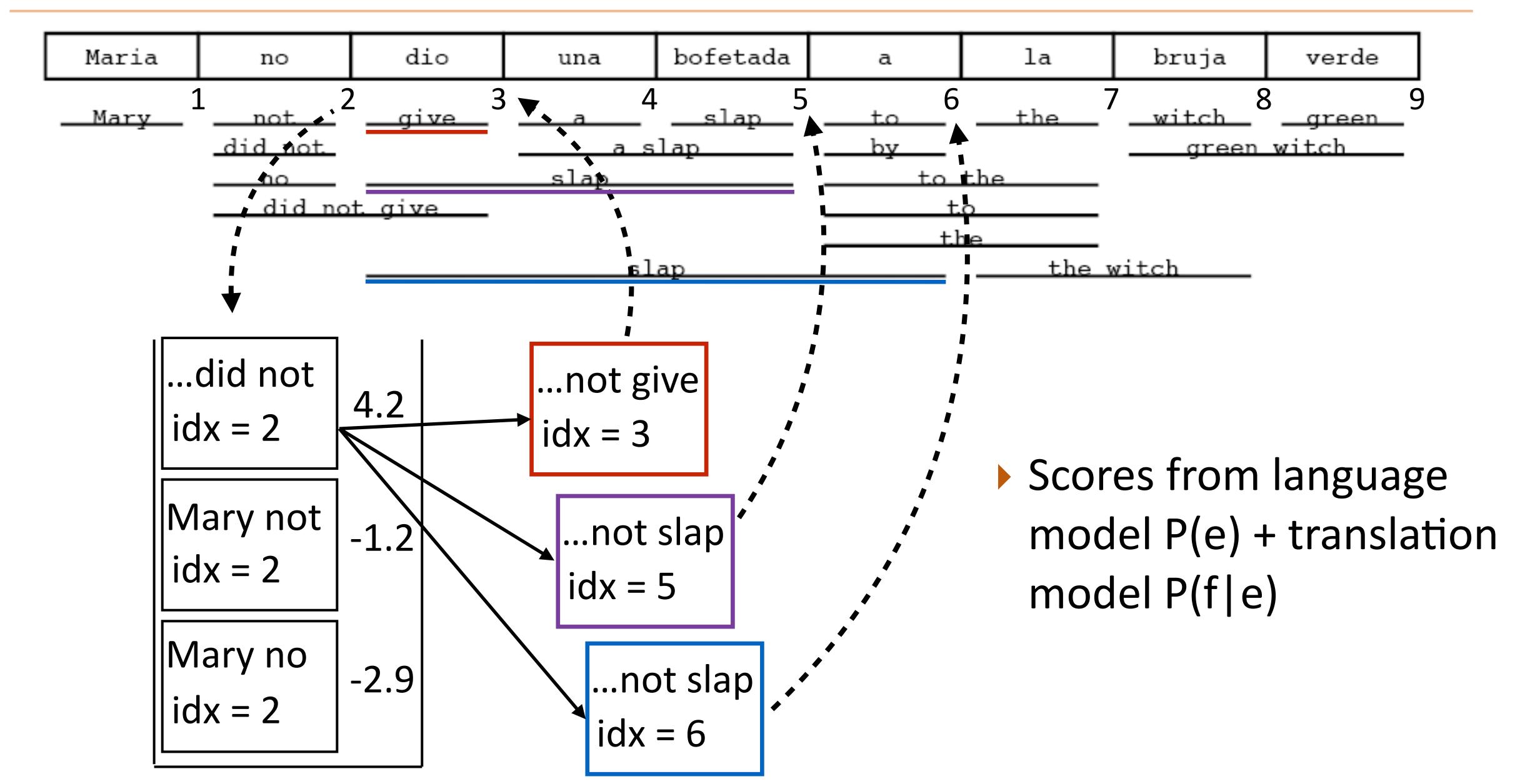


- ▶ Alignment dist parameterized by jump size: $P(a_j a_{j-1})$ ——
- $P(f_i|e_{a_i})$: word translation table



Brown et al. (1993)

Recall: Decoding



This Lecture

Syntactic MT

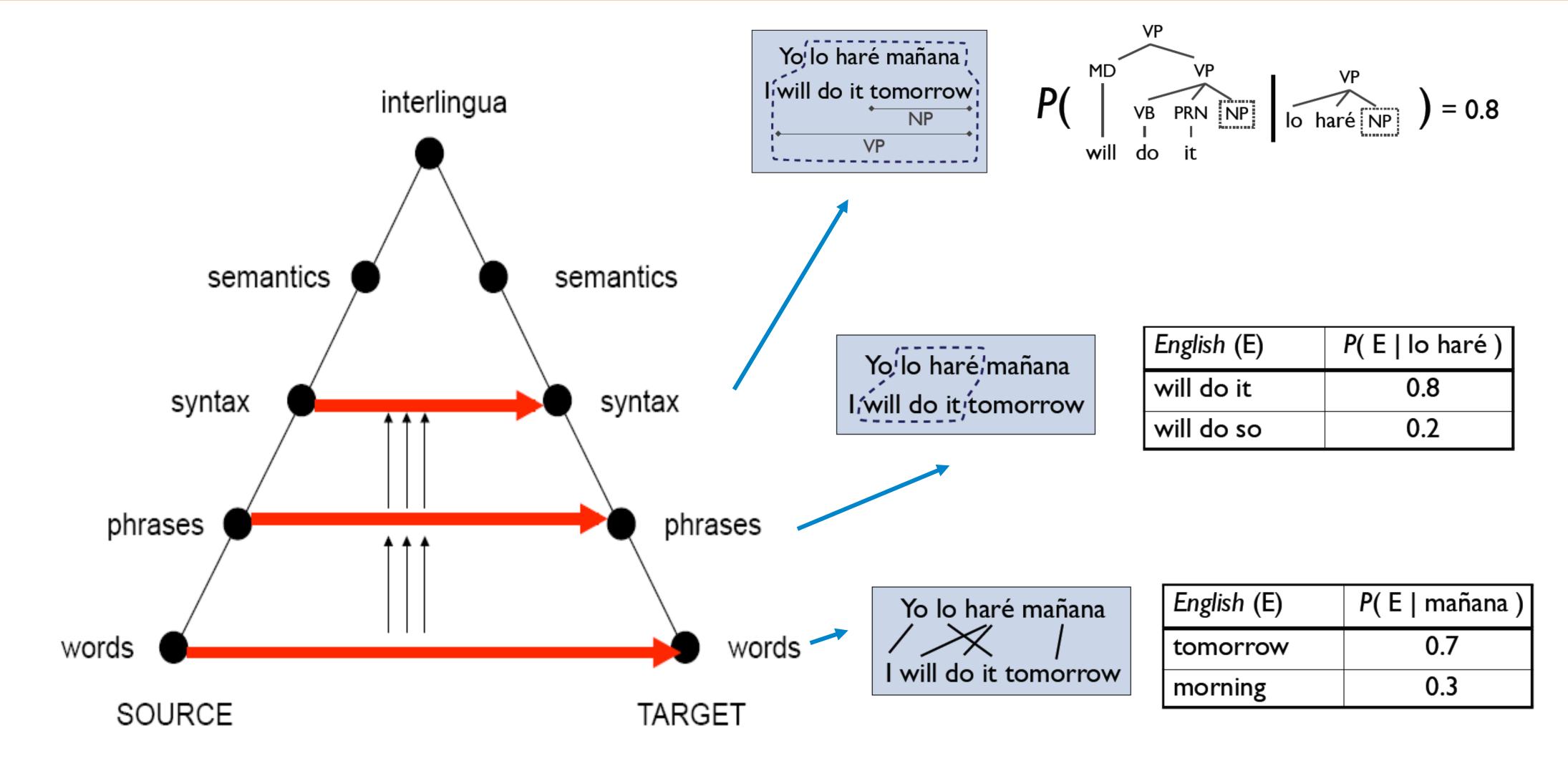
Neural MT details

Dilated CNNs for MT

Transformers for MT

Syntactic MT

Levels of Transfer: Vauquois Triangle



Is syntax a "better" abstraction than phrases?

Slide credit: Dan Klein

Syntactic MT

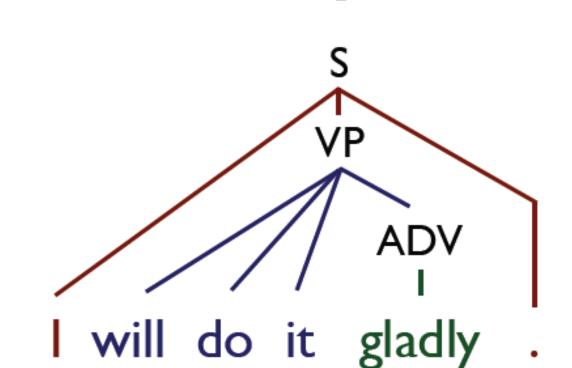
Rather than use phrases, use a synchronous context-free grammar: constructs "parallel" trees in two languages simultaneously

```
NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]
DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
JJ \rightarrow [yellow, jaune]
DT_1 JJ_2 NN_3 DT_1 NN_3 JJ_2
the yellow car la voiture jaune
```

- Assumes parallel syntax up to reordering
- Translation = parse the input with "half" the grammar, read off other half

Syntactic MT

Input S VP ADV lo haré de muy buen grado .



Output

Grammar

- Relax this by using lexicalized rules, like "syntactic phrases"
- Leads to HUGE grammars, parsing is slow

```
S \rightarrow \langle VP .; I VP . \rangle OR S \rightarrow \langle VP .; you VP . \rangle

VP \rightarrow \langle Io haré ADV; will do it ADV \rangle

S \rightarrow \langle Io haré ADV .; I will do it ADV . \rangle

ADV \rightarrow \langle de muy buen grado; gladly \rangle
```

Slide credit: Dan Klein

Neural MT

Encoder-Decoder MT

- Sutskever seq2seq paper: first major application of LSTMs to NLP
- Basic encoder-decoder with beam search

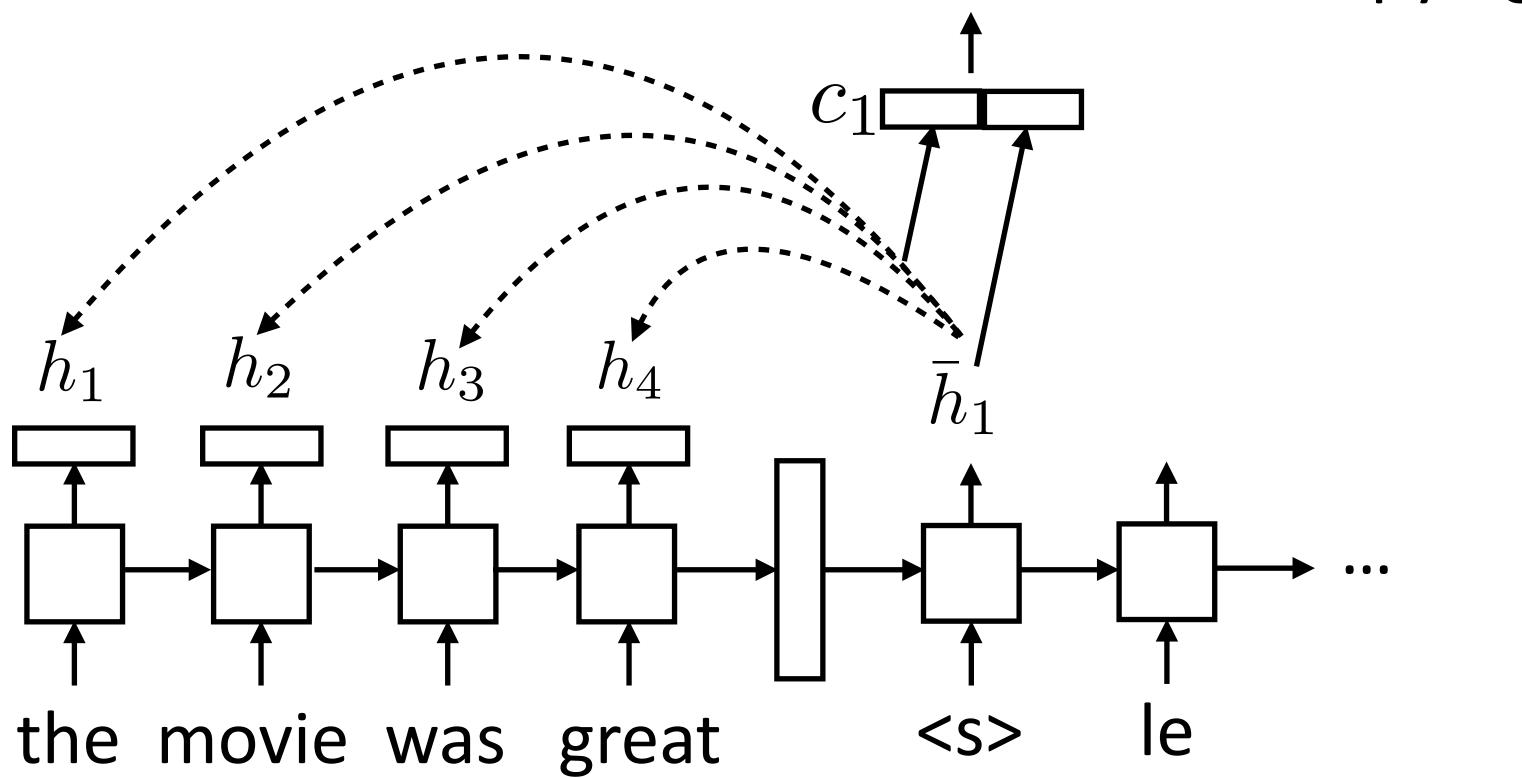
Method	test BLEU score (ntst14)
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

► SOTA = 37.0 — not all that competitive...

Encoder-Decoder MT

Better model from seq2seq lectures: encoder-decoder with attention and copying for rare words

distribution over vocab + copying



Results: WMT English-French

▶ 12M sentence pairs

Classic phrase-based system: ~33 BLEU, uses additional target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

Sutskever+ (2014) seq2seq single: 30.6 BLEU

Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

Luong+ (2015) seq2seq ensemble with attention and rare word handling: **37.5** BLEU

▶ But English-French is a really easy language pair and there's *tons* of data for it! Does this approach work for anything harder?

Results: WMT English-German

▶ 4.5M sentence pairs

Classic phrase-based system: 20.7 BLEU

Luong+ (2014) seq2seq: 14 BLEU

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

- BLEU isn't comparable across languages, but this performance still isn't as good
- French, Spanish = easiest
 German, Czech, Chinese = harder
 Japanese, Russian = hard (grammatically different, lots of morphology...)

MT Examples

src	In einem Interview sagte Bloom jedoch, dass er und Kerr sich noch immer lieben.
ref	However, in an interview, Bloom has said that he and <i>Kerr</i> still love each other.
best	In an interview, however, Bloom said that he and $Kerr$ still love.
base	However, in an interview, Bloom said that he and Tina were still < unk > .

- best = with attention, base = no attention
- NMT systems can hallucinate words, especially when not using attention
 - phrase-based doesn't do this

MT Examples

src	Wegen der von Berlin und der Europäischen Zentralbank verhängten strengen Sparpolitik in
	Verbindung mit der Zwangsjacke, in die die jeweilige nationale Wirtschaft durch das Festhal-
	ten an der gemeinsamen Währung genötigt wird, sind viele Menschen der Ansicht, das Projekt
	Europa sei zu weit gegangen
ref	The austerity imposed by Berlin and the European Central Bank, coupled with the straitjacket
	imposed on national economies through adherence to the common currency, has led many people
	to think Project Europe has gone too far.
best	Because of the strict austerity measures imposed by Berlin and the European Central Bank in
	connection with the straitjacket in which the respective national economy is forced to adhere to
	the common currency, many people believe that the European project has gone too far.
base	Because of the pressure imposed by the European Central Bank and the Federal Central Bank
	with the strict austerity imposed on the national economy in the face of the single currency,
	many people believe that the European project has gone too far.

best = with attention, base = no attention

Luong et al. (2015)

MT Examples

Source	such changes in reaction conditions include, but are not limited to,				
	an increase in temperature or change in ph .				
Reference	所(such) 述(said) 反 应(reaction) 条 件(condition) 的(of)				
	改变(change) 包括(include) 但(but) 不(not) 限于(limit)				
	温度(temperature) 的(of) 增加(increase) 或(or) pH 值(value) 的(of) 改变(change)。				
PBMT	中(in) 的(of) 这种(such) 变化(change) 的(of) 反应(reaction) 条				
	件(condition) 包括(include) ,但(but) 不(not) 限于(limit) ,				
	增加(increase) 的(of) 温度(temperature) 或(or) pH 变化(change) 。				
NMT	这种(such) 反应(reaction) 条件(condition) 的(of) 变化(change) 包括(include) 但(but) 不(not)				
	限于(limit) pH 或(or) pH 的(of) 变化(change)。				

- NMT can repeat itself if it gets confused (pH or pH)
- Phrase-based MT often gets chunks right, may have more subtle ungrammaticalities

Zhang et al. (2017)

Handling Rare Words

- Words are a difficult unit to work with: copying can be cumbersome, word vocabularies get very large
- Character-level models don't work well
- Compromise solution: use thousands of "word pieces" (which may be full words but may also be parts of words)

```
Input: _the _eco tax _port i co _in _Po nt - de - Bu is ...

Output: _le _port ique _éco taxe _de _Pont - de - Bui s
```

Can achieve transliteration with this, subword structure makes some translations easier to achieve

Sennrich et al. (2016)

Byte Pair Encoding (BPE)

Start with every individual byte (basically character) as its own symbol

```
for i in range(num_merges):
   pairs = get_stats(vocab)
   best = max(pairs, key=pairs.get)
   vocab = merge_vocab(best, vocab)
```

- Count bigram character cooccurrence
- Merge the most frequent pair of adjacent characters
- Do this either over your vocabulary (original version) or over a large corpus (more common version)
- Doing 8k merges => vocabulary of around 8000 word pieces. Includes many whole words
- Most SOTA NMT systems use this on both source + target

Sennrich et al. (2016)

Word Pieces

while voc size < target voc size:

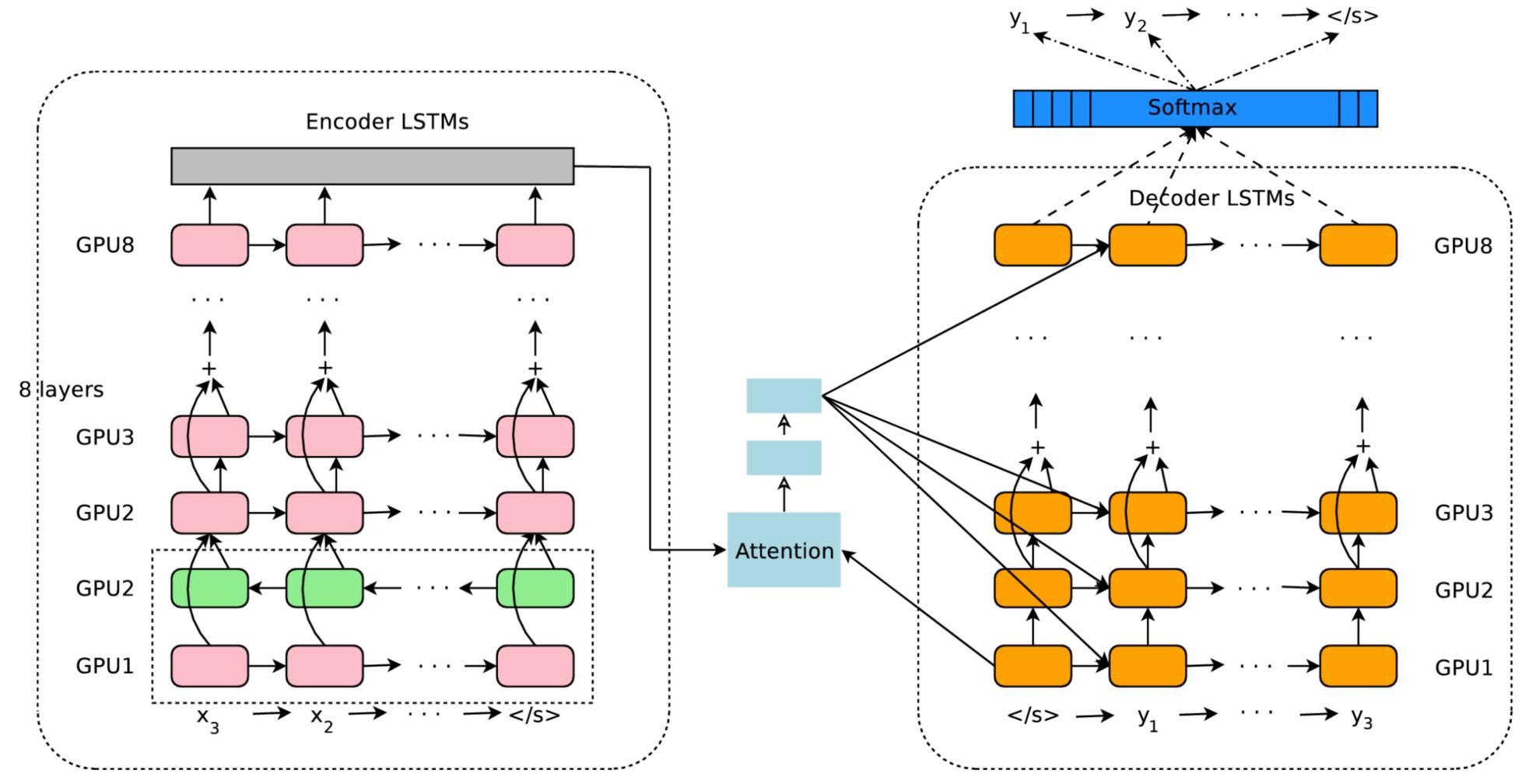
Build a language model over your corpus

Merge pieces that lead to highest improvement in language model perplexity

- Issues: what LM to use? How to make this tractable?
- SentencePiece library from Google: unigram LM
- Result: way of segmenting input appropriate for translation

Schuster and Nakajima (2012), Wu et al. (2016), Kudo and Richardson (2018)

Google's NMT System



▶ 8-layer LSTM encoder-decoder with attention, word piece vocabulary of 8k-32k Wu et al. (2016)

Google's NMT System

English-French:

Google's phrase-based system: 37.0 BLEU

Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU

Google's 32k word pieces: 38.95 BLEU

English-German:

Google's phrase-based system: 20.7 BLEU

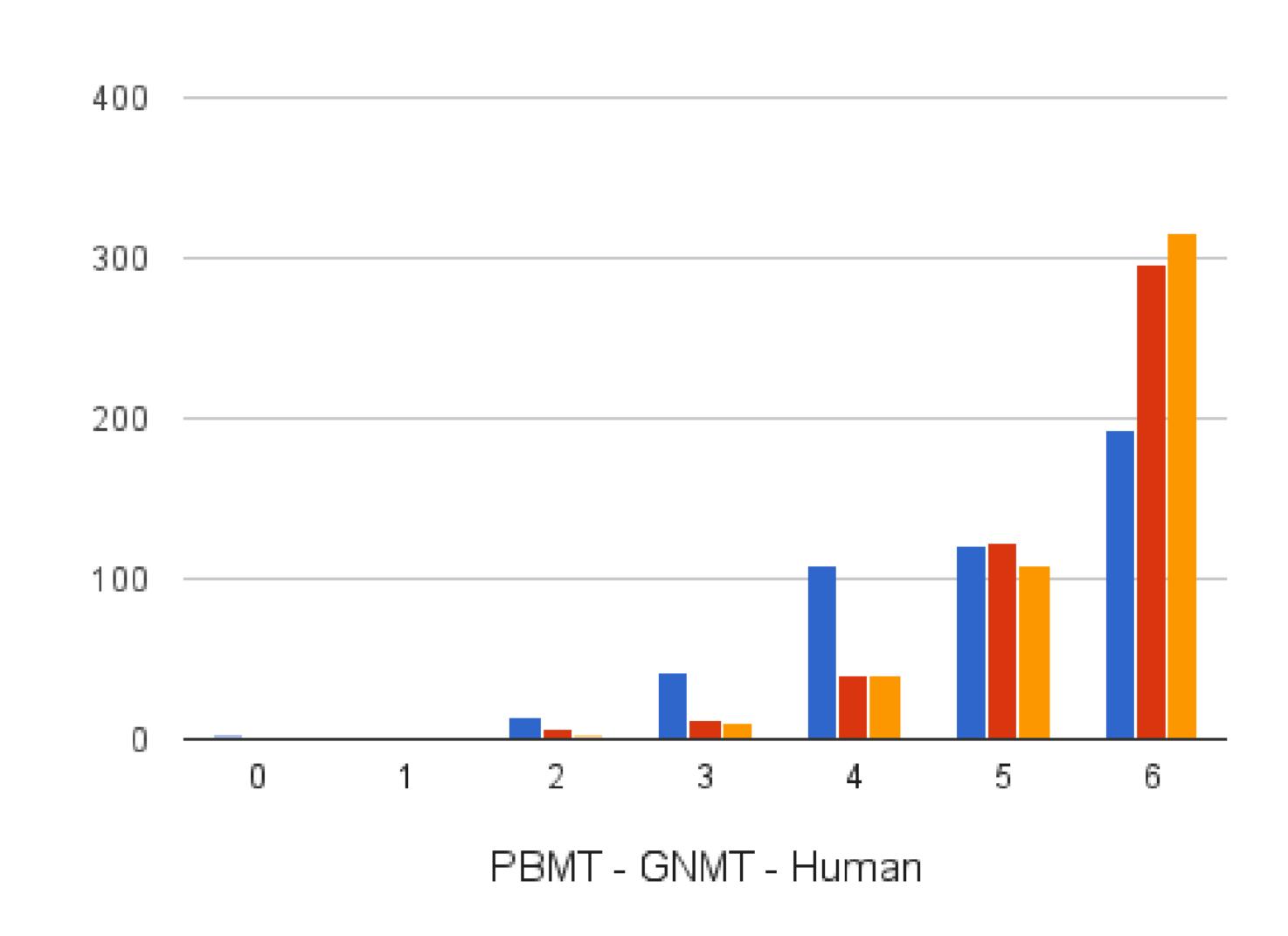
Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

Google's 32k word pieces: 24.2 BLEU

Human Evaluation (En-Es)

Similar to human-level performance on English-Spanish

Count (total 500)



Wu et al. (2016)

Google's NMT System

Source	e She was spotted three days later by a dog walker trapped in the quarry		
$\overline{\ \ PBMT}$	Elle a été repéré trois jours plus tard par un promeneur de chien piégé dans la carrière	6.0	
$\overline{\text{GNMT}}$	Elle a été repérée trois jours plus tard par un traîneau à chiens piégé dans la carrière.	2.0	
Human	Elle a été repérée trois jours plus tard par une personne qui promenait son chien coincée dans la carrière	5.0	

Gender is correct in GNMT but not in PBMT

"walker"

Backtranslation

- ▶ Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large monolingual corpus T' to train a language model. Can neural MT do the same?
- Approach 1: force the system to generate T' as targets from null inputs

```
S<sub>1</sub>, t<sub>1</sub>
S<sub>2</sub>, t<sub>2</sub>
...

[null], t'<sub>1</sub>
[null], t'<sub>2</sub>
```

 Approach 2: generate synthetic sources with a T->S machine translation system (backtranslation)

```
S<sub>1</sub>, t<sub>1</sub>
S<sub>2</sub>, t<sub>2</sub>
...

MT(t'<sub>1</sub>), t'<sub>1</sub>
MT(t'<sub>2</sub>), t'<sub>2</sub>
```

Sennrich et al. (2015)

Backtranslation

name	training		BLEU			
	data	instances	tst2011	tst2012	tst2013	tst2014
baseline (Gülçehre et al., 2015) 18.4 18.8 19.9			18.7			
deep fusion (Gülçehre et al., 2015)		20.2	20.2	21.3	20.6	
baseline	parallel	7.2m	18.6	18.2	18.4	18.3
parallel _{synth}	parallel/parallel _{synth}	6m/6m	19.9	20.4	20.1	20.0
Gigaword _{mono}	parallel/Gigaword _{mono}	7.6m/7.6m	18.8	19.6	19.4	18.2
Gigawordsynth	parallel/Gigaword _{synth}	8.4m/8.4m	21.2	21.1	21.8	20.4

- ▶ Gigaword: large monolingual English corpus
- parallel_{synth}: backtranslate training data; makes additional noisy source sentences which could be useful

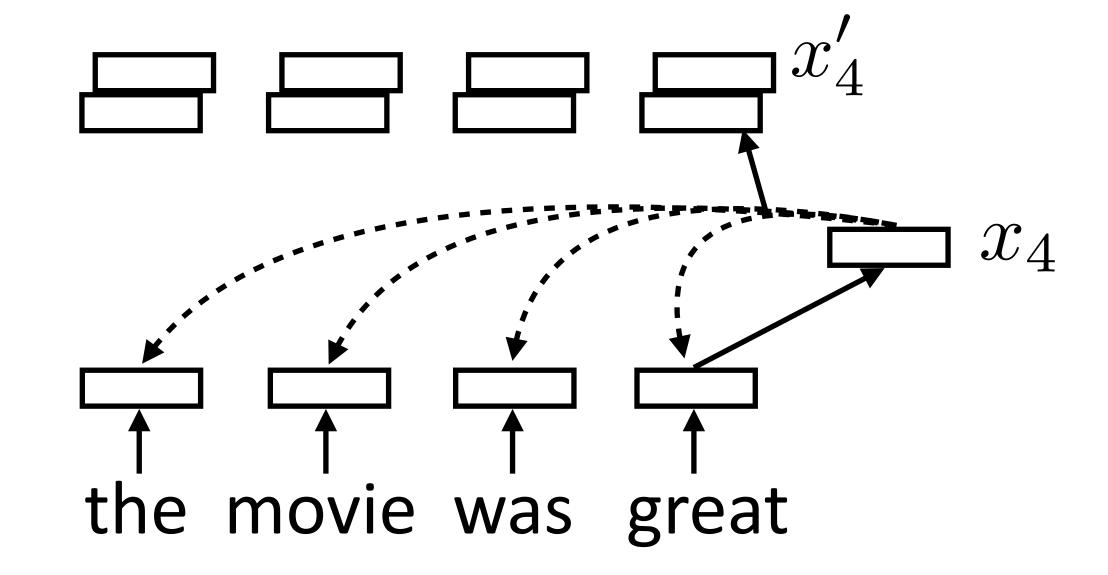
Sennrich et al. (2015)

Transformers for MT

Recall: Self-Attention

► Each word forms a "query" which then computes attention over each word

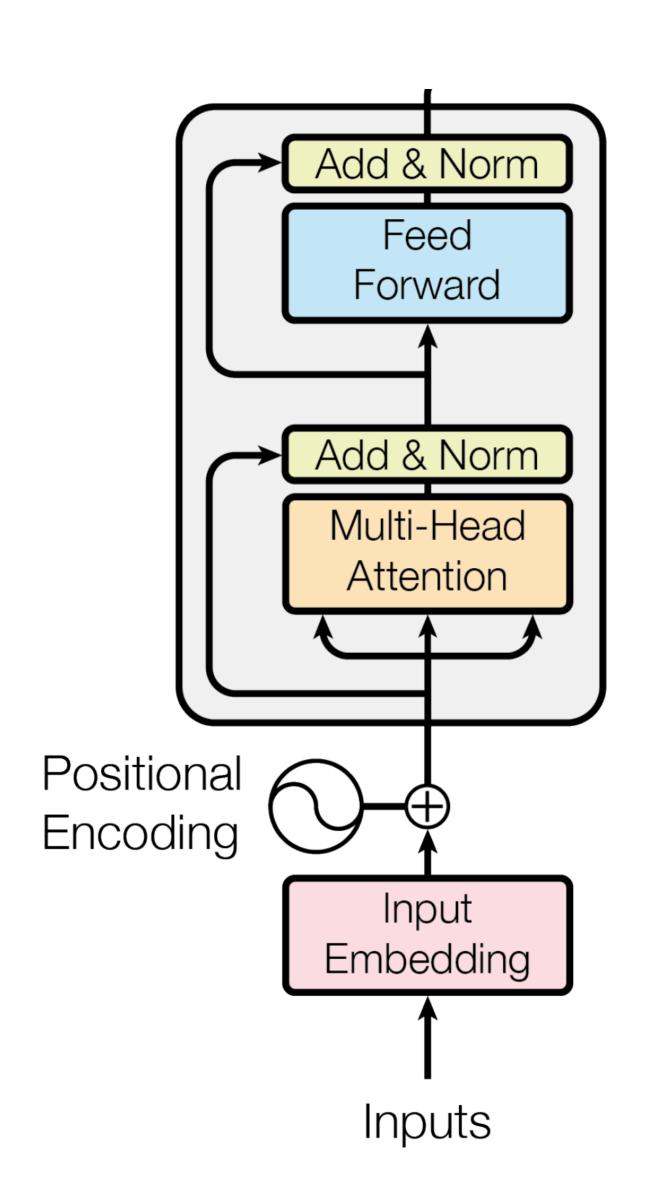
$$lpha_{i,j} = \operatorname{softmax}(x_i^{ op} x_j)$$
 scalar $x_i' = \sum_{i=1}^n lpha_{i,j} x_j$ vector = sum of scalar * vector

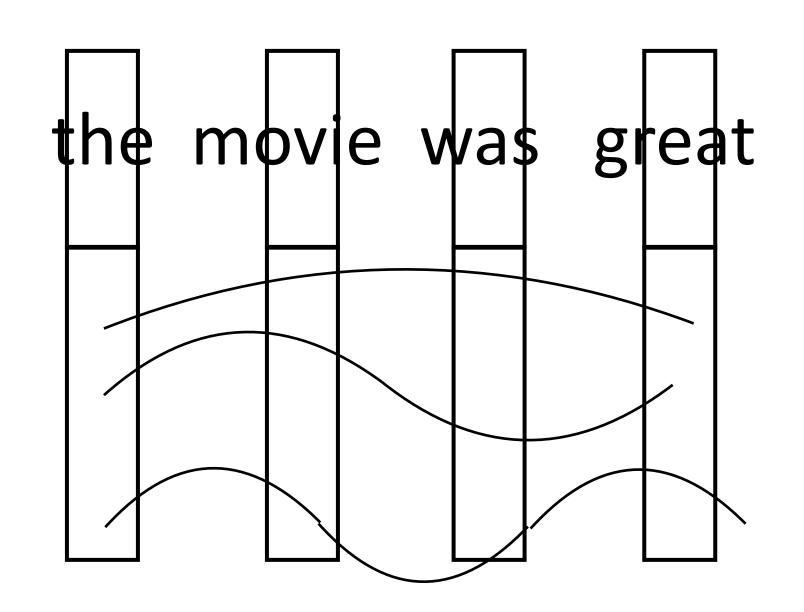


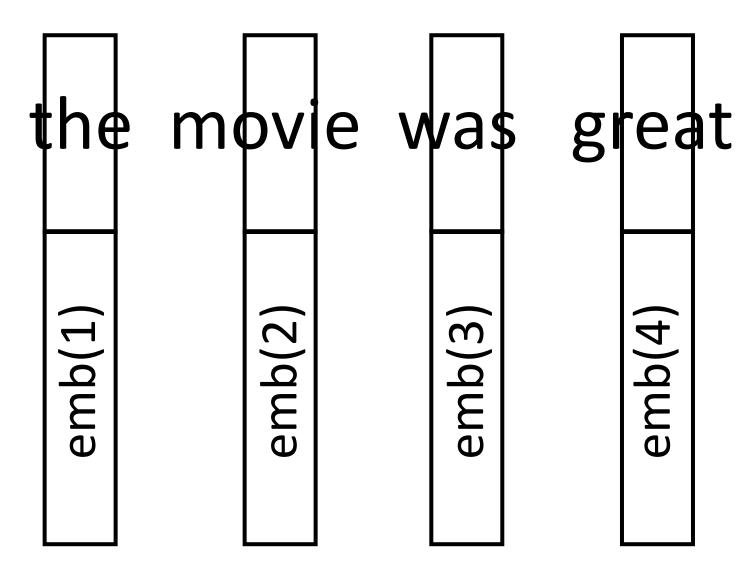
Multiple "heads" analogous to different convolutional filters. Use parameters W_k and V_k to get different attention values + transform vectors

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

Transformers

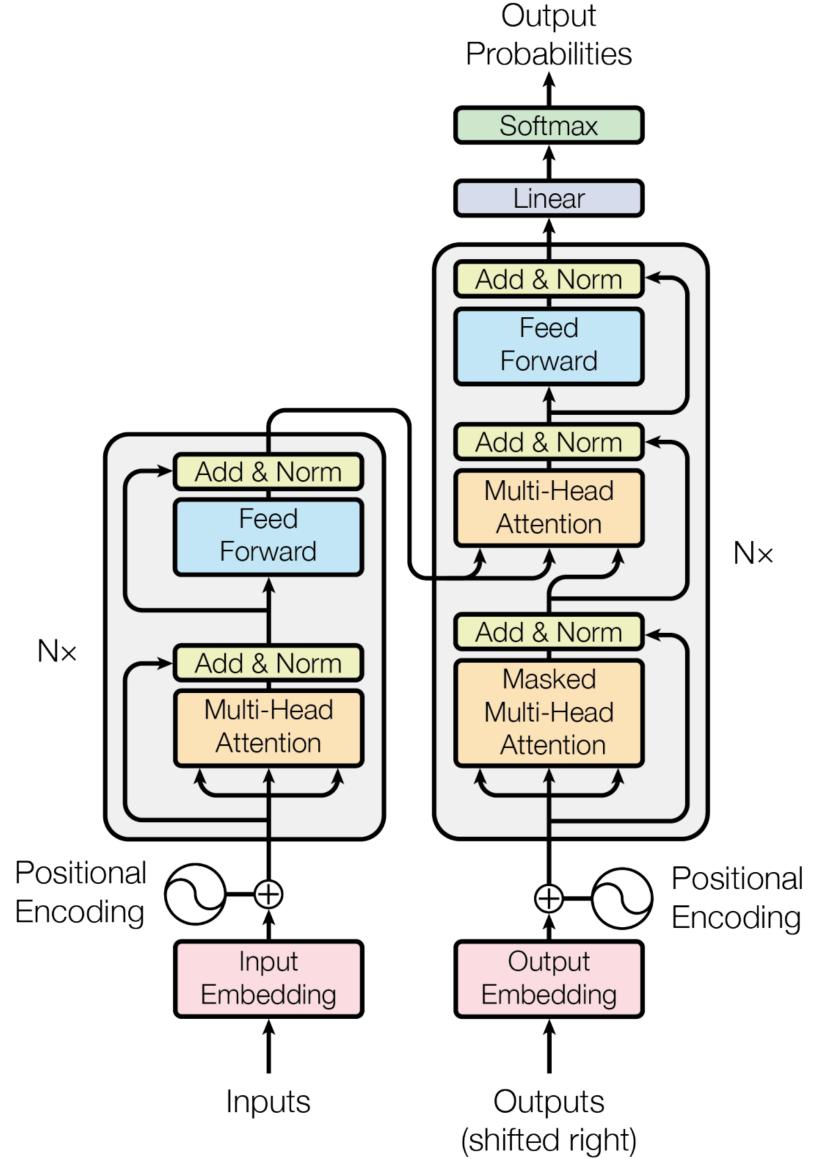






- Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products
- Works essentially as well as just encoding position as a one-hot vector Vaswani et al. (2017)

Transformers



Encoder and decoder are both transformers

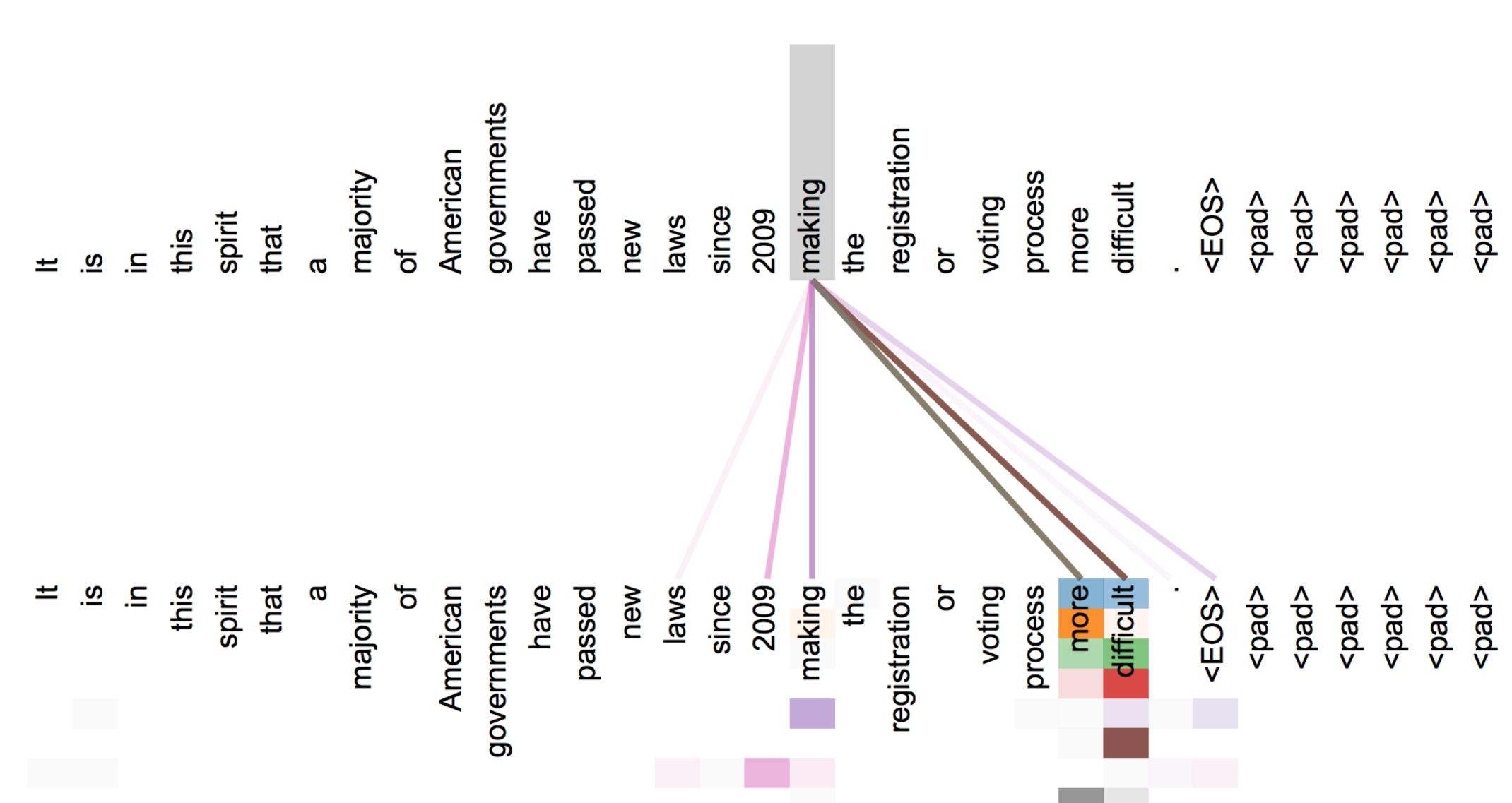
Decoder consumes the previous generated token (and attends to input), but has no recurrent state

Transformers

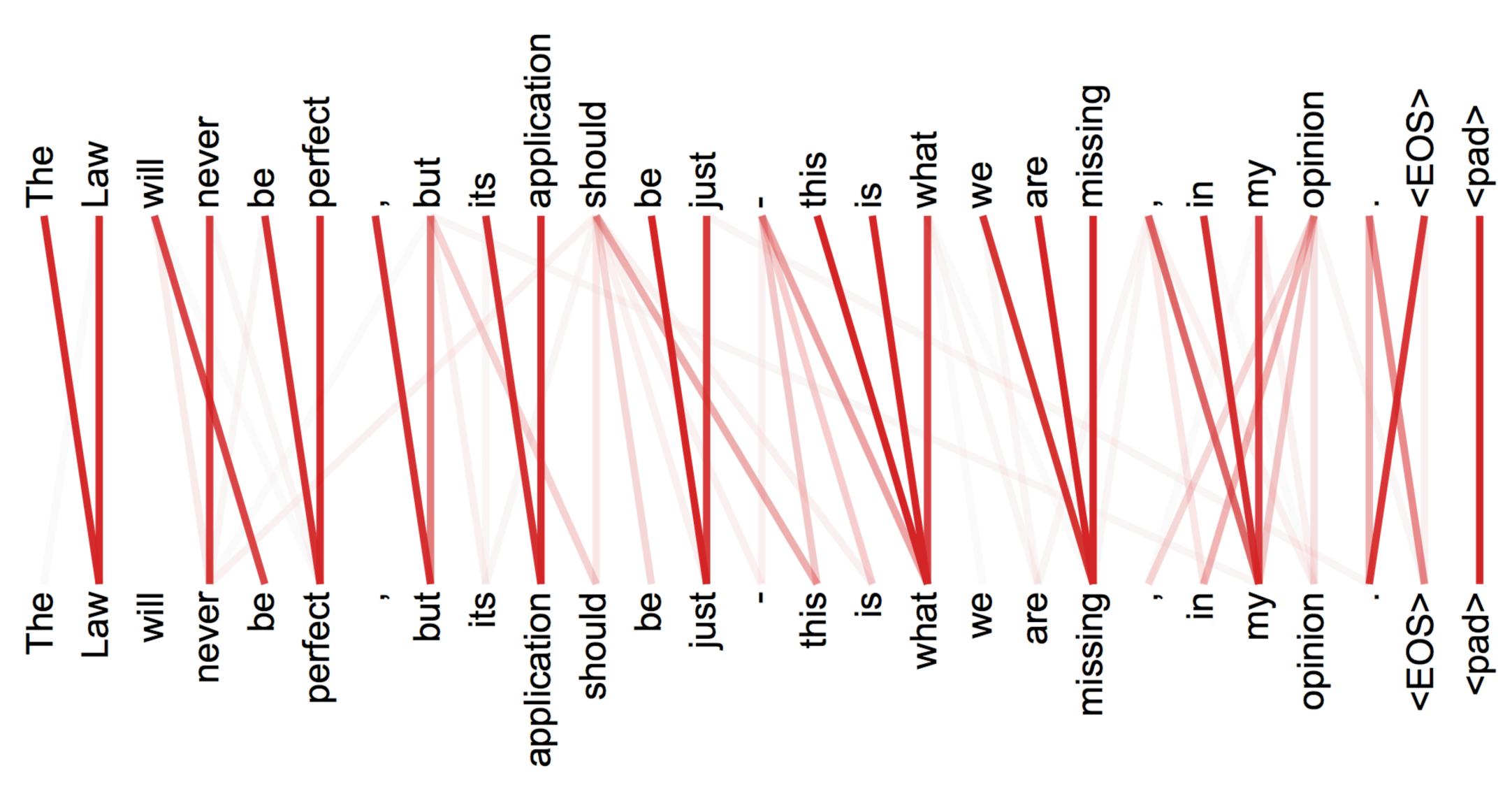
Madal	BLEU			
Model	EN-DE	EN-FR		
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		
GNMT + RL [38]	24.6	39.92		
ConvS2S [9]	25.16	40.46		
MoE [32]	26.03	40.56		
Deep-Att + PosUnk Ensemble [39]		40.4		
GNMT + RL Ensemble [38]	26.30	41.16		
ConvS2S Ensemble [9]	26.36	41.29		
Transformer (base model)	27.3	38.1		
Transformer (big)	28.4	41.8		

Big = 6 layers, 1000 dim for each token, 16 heads,
 base = 6 layers + other params halved

Visualization



Visualization



Takeaways

- Can build MT systems with LSTM encoder-decoders, CNNs, or transformers
- Word piece / byte pair models are really effective and easy to use
- State of the art systems are getting pretty good, but lots of challenges remain, especially for low-resource settings
- Next time: pre-trained transformer models (BERT), applied to other tasks