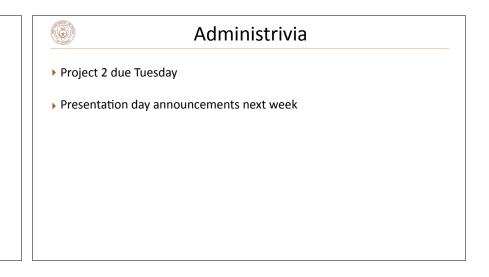
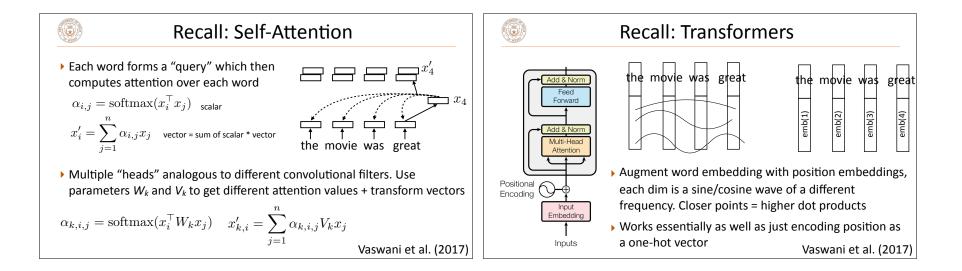
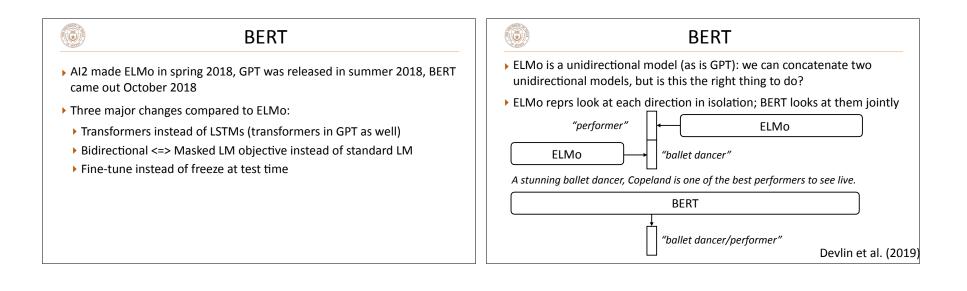
CS388: Natural Language Processing

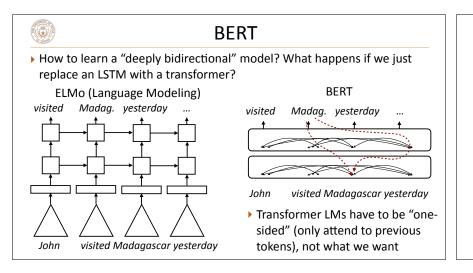
Lecture 19: Pretrained Transformers

Greg Durrett TEXAS The University of Texas at Austin







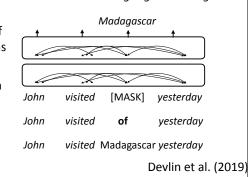


Masked Language Modeling

How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling

 BERT formula: take a chunk of text, predict 15% of the tokens

- For 80% (of the 15%), replace the input token with [MASK]
- For 10%, replace w/random
- For 10%, keep same

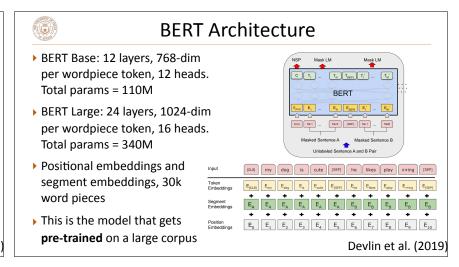


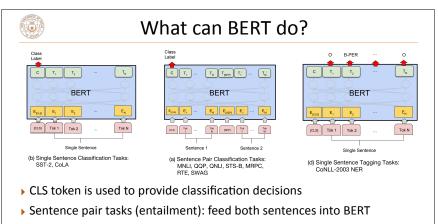
Next "Sentence" Prediction

Input: [CLS] Text chunk 1 [SEP] Text chunk 2

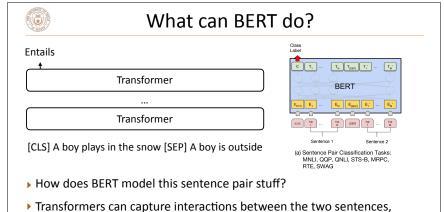
- 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- BERT objective: masked LM + next sentence prediction

N	lotNext	Madagascar †					joyed †	like ↑
Transformer								
	Transforme			forme	r			
	[CLS] John	visited	[MASK]	yesterday	and	really	all it	[SEP] / like Madonna.
								Devlin et al. (2019)





 BERT can also do tagging by predicting tags at each word piece Devlin et al. (2019)



even though the NSP objective doesn't really cause this to happen

What can BERT NOT do?

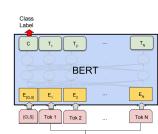
• BERT cannot generate text (at least not in an obvious way)

- Not an autoregressive model, can do weird things like stick a [MASK] at the end of a string, fill in the mask, and repeat
- Masked language models are intended to be used primarily for "analysis" tasks

۲

Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5



Single Sentence (b) Single Sentence Classification Tasks: SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist

Pretraining	Adaptation	NER	SA	SA Nat. lang. inference			Semantic textual similarity			
rieuannig	Auaptation	CoNLL 2003	SST-2	MNLI	SICK-E	SICK-R	MRPC	STS-B		
Skip-thoughts	*	-	81.8	62.9	-	86.6	75.8	71.8		
	*	91.7	91.8	79.6	86.3	86.1	76.0	75.9		
ELMo	۸	91.9	91.2	76.4	83.3	83.3	74.7	75.5		
	∆=0-*	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4		
	*	92.2	93.0	84.6	84.8	86.4	78.1	82.9		
BERT-base	٠	92.4	93.5	84.6	85.8	88.7	84.8	87.1		
	∆=0	0.2	0.5	0.0	1.0	2.3	6.7	4.2		

Corpus	Train	Test	Task	Metrics	Domain
			Single-Se	entence Tasks	
CoLA	8.5k	1k	acceptability	Matthews corr.	misc.
SST-2	67k	1.8k	sentiment	acc.	movie reviews
			Similarity and	l Paraphrase Tasks	
MRPC	3.7k	1.7k	paraphrase	acc./F1	news
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.
QQP	364k	391k	paraphrase	acc./F1	social QA questions
			Infere	ence Tasks	
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia
RTE	2.5k	3k	NLI	acc.	news, Wikipedia
WNLI	634	146	coreference/NLI	acc.	fiction books

Results									
System	MNLI-(m/mm)		-						Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

• Huge improvements over prior work (even compared to ELMo)

 Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

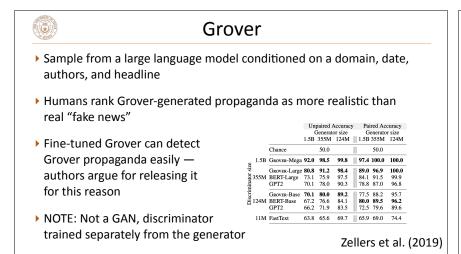
Devlin et al. (2018)

Peters, Ruder, Smith (2019)

"Robustly optimized BERT"	Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-
	RoBERTa						
160GB of data instead of	with BOOKS + WIKI	16GB 160GB	8K 8K	100K 100K	93.6/87.3	89.0 89.3	95.3 95.6
16 GB	+ additional data (§3.2) + pretrain longer	160GB	8K	300K	94.0/87.7 94.4/88.7	89.3 90.0	95.0
10 08	+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
 Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them 	BERT _{LARGE} with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7
New training + more data = be	etter performar	nce					

	 OpenAl GPT/GPT2 "ELMo with transformers" (works better than ELMo) Train a single unidirectional transformer LM on long contexts 						
	GPT2: trained on 40GB of text collected from upvoted links Parameters Layers d_{model}						
GPT/GPT2	from reddit 117M 12 768						
	 ▶ 1.5B parameters — by far the largest of these models trained as of March 2019 > 1.5B parameters — by far the 762M > 345M > 24 > 1024 762M > 36 > 1280 > 1542M > 48 > 1600 						
	 Because it's a language model, we can generate from it Radford et al. (2019) 						

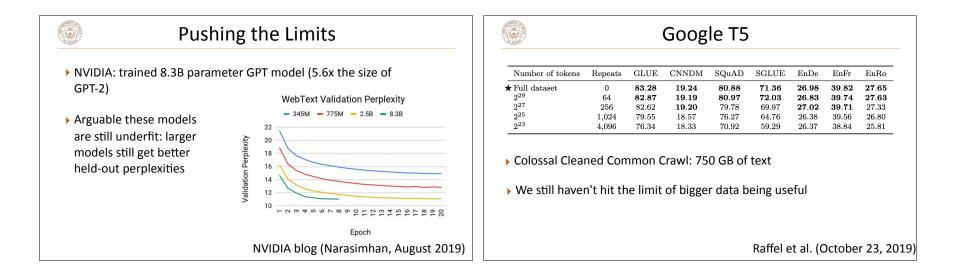
OpenAl GPT2		Open Questions
SYSTEM PROMET Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today. MODEL COMPLETION (MACHINE-WRITTEN, SECOND TRY) The 19-year-old singer was caught on camera being escorted out of Lines' on the front and 'Fashion Police' on the back. Scroll down for video Scroll down for video Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured) The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back The singer was also wearing a pair of black-rimmed glasses, a black jacket, black jeans and black and white striped gloves and a small black bag.	slide credit: OpenAl	 How novel is the stuff being generated? (Is it just doing nearest neighbors on a large corpus?) How do we understand and distill what is learned in this model? How do we harness these priors for conditional generation tasks (summarization, generate a report of a basketball game, etc.) Is this technology dangerous? (OpenAI has only released 774M param model, not 1.5B yet)

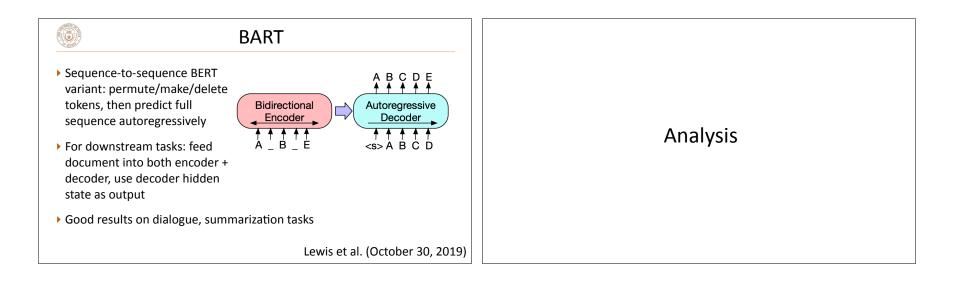


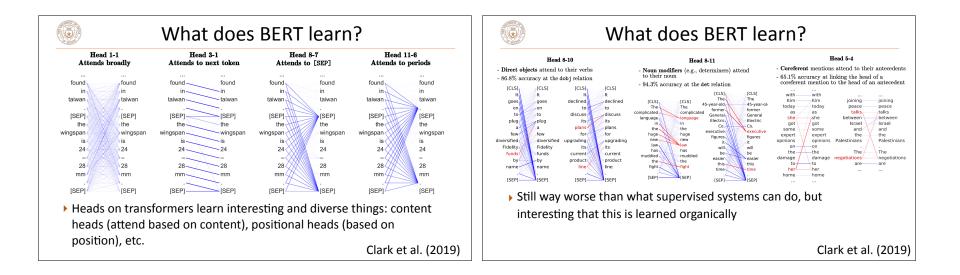
Pre-Training Cost (with Google/AWS)

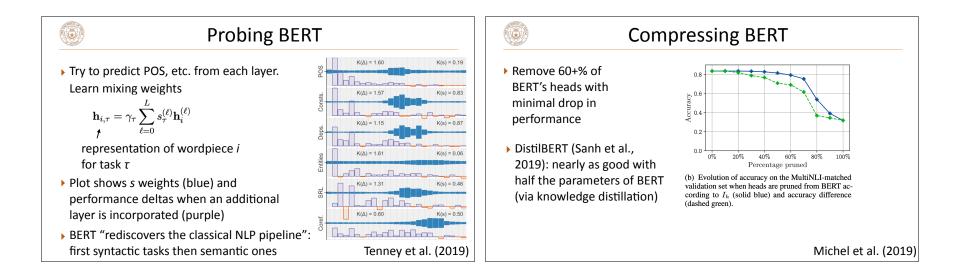
- BERT: Base \$500, Large \$7000
- Grover-MEGA: \$25,000
- > XLNet (BERT variant): \$30,000 \$60,000 (unclear)
- This is for a single pre-training run...developing new pre-training techniques may require many runs
- Fine-tuning these models can typically be done with a single GPU (but may take 1-3 days for medium-sized datasets)

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/









Open Questions

 BERT-based systems are state-of-the-art for nearly every major text analysis task

- > These techniques are here to stay, unclear what form will win out
- Role of academia vs. industry: no major pretrained model has come purely from academia
- Cost/carbon footprint: a single model costs \$10,000+ to train (though this cost should come down)