
CS388:	Natural	Language	Processing

Greg	Durrett

Some	slides	adapted	from	Vivek	Srikumar,	University	of	Utah

credit:	Machine	Learning	Memes	on	Facebook

Lecture	2:	Binary	
ClassificaIon

Administrivia

‣ Course	enrollment	

‣ Course	website:	slides,	readings,	office	hours,	syllabus	

‣Mini	1	out,	due	Tuesday	

‣ Greg’s	office	hours	on	Thursday	are	rescheduled	to	9am-10am

This	Lecture
‣ Linear	classificaIon	fundamentals

‣ Three	discriminaIve	models:	logisIc	regression,	perceptron,	SVM
‣ Different	moIvaIons	but	very	similar	update	rules	/	inference!

‣ OpImizaIon

‣ SenIment	analysis

ClassificaIon

ClassificaIon

‣ Embed	datapoint	in	a	feature	space

+++ +
+ +
++

- - -
-

-

‣ Linear	decision	rule:	

											=	[0.5,	1.6,	0.3]

	[0.5,	1.6,	0.3,	1]

x

y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint						with	label	

but	in	this	lecture											and					are	interchangeable
x

f(x)

w

>
f(x) + b > 0

f(x)
‣ Can	delete	bias	if	we	augment	feature	space:

w

>
f(x) > 0

+++ +
+ +
++

- - -
-

-+++ +
+ +
++

- - -
-

-
???

f(x)	=	[x1,	x2,	x12,	x22,	x1x2]

x1

x2

+++ +
+ +
++

- - -
-

-

+++ +
+ +
++

- - -
-

-

x1x2

x1

f(x)	=	[x1,	x2]

Linear	funcIons	are	powerful!

‣ “Kernel	trick”	does	this	for	“free,”	but		is	too	expensive	to	use	in	NLP	
applicaIons,	training	is														instead	ofO(n2) O(n · (num feats))

ClassificaIon:	SenIment	Analysis

this	movie	was	great!	would	watch	again

NegaIve

PosiIve

that	film	was	awful,	I’ll	never	watch	again

‣ Surface	cues	can	basically	tell	you	what’s	going	on	here:	presence	or	
absence	of	certain	words	(great,	awful)

‣ Steps	to	classificaIon:
‣ Turn	examples	like	this	into	feature	vectors

‣ Pick	a	model	/	learning	algorithm

‣ Train	weights	on	data	to	get	our	classifier

Feature	RepresentaIon

this	movie	was	great!	would	watch	again PosiIve

‣ Convert	this	example	to	a	vector	using	bag-of-words	features

‣ Requires	indexing	the	features	(mapping	them	to	axes)

[contains	the]			[contains	a]			[contains	was]		[contains	movie]		[contains	film]

0 0 1 1 0

‣More	sophisIcated	feature	mappings	possible	(i-idf),	as	well	as	lots	of	
other	features:	n-grams,	character	n-grams,	parts	of	speech,	lemmas,	…

posiIon	0 posiIon	1 posiIon	2 posiIon	3 posiIon	4

‣ Very	large	vector	space	(size	of	vocabulary),	sparse	features	(how	many?)

…f(x)	=	[

…

GeneraIve	vs.	DiscriminaIve	Modeling

‣ GeneraIve	models:	probabilisIc	models	of	P(x,y)

‣ DiscriminaIve	models	model	P(y|x)	directly,	compute	

‣ Data	point																																,	label	

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

x = (x1, ..., xn) y 2 {0, 1}

P (y|x)‣ Compute														,	predict																															to	classifyargmaxyP (y|x)

‣ Examples:	Naive	Bayes	(see	textbook),	Hidden	Markov	Models

‣ Examples:	logisIc	regression

argmaxyP (y|x)

“proporIonal	to”

‣ Cannot	draw	samples	of	x,	but	typically	bener	classifiers

LogisIc	Regression

LogisIc	Regression

‣ To	learn	weights:	maximize	discriminaIve	log	likelihood	of	data	(log	P(y|x))

P (y = +|x) = logistic(w

>
x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(

Pn
i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=

nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

sum	over	features

L({xj , yj}j=1,...,n) =

X

j

logP (yj |xj) corpus-level	LL

one	(posiIve)	example	LL

LogisIc	Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (

Pn
i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (

Pn
i=1 wixji)

xji exp

nX

i=1

wixji

!

deriv	
of	log

deriv	
of	exp

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (

Pn
i=1 wixji)

= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =

nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

LogisIc	Regression

If	P(+)	is	close	to	1,	make	very	linle	update	
Otherwise	make	wi	look	more	like	xji,	which	will	increase	P(+)

‣ Gradient	of	wi	on	posiIve	example

‣ Gradient	of	wi	on	negaIve	example

If	P(+)	is	close	to	0,	make	very	linle	update	
Otherwise	make	wi	look	less	like	xji,	which	will	decrease	P(+)

xj(yj � P (yj = 1|xj))

= xji(�P (yj = +|xj))

‣ Can	combine	these	gradients	as

‣ Let	yj	=	1	for	posiIve	instances,	yj	=	0	for	negaIve	instances.	

= xji(1� P (yj = +|xj))

Example
+(1)	this	movie	was	great!	would	watch	again

(3)	great	potenAal	but	ended	up	being	a	flop —
+(2)	I	expected	a	great	movie	and	leC	happy

xj(yj � P (yj = 1|xj))

[contains	great]	[contains	movie]
posiIon	0 posiIon	1

w	=	[0,	0]

1 1]f(x1)	=	[

1 1]f(x2)	=	[

1 0]f(x3)	=	[

P(y	=	1	|	x1)

w	=	[0.5,	0.5]

P (y = +|x) = logistic(w

>
x)

P(y	=	1	|	x2)	=	logisIc(1)	≈	0.75

w	=	[0.75,	0.75] P(y	=	1	|	x3)	=	logisIc(0.75)	≈	0.67

w	=	[0.08,	0.75] …

g	=	[0.5,	0.5]

g	=	[0.25,	0.25]

g	=	[-0.67,	0]

=	exp(0)/(1	+	exp(0))	=	0.5

RegularizaIon
‣ Regularizing	an	objecIve	can	mean	many	things,	including	an	L2-
norm	penalty	to	the	weights:

mX

j=1

L(xj , yj)� �kwk22

‣ Keeping	weights	small	can	prevent	overfitng

‣ For	most	of	the	NLP	models	we	build,	explicit	regularizaIon	isn’t	necessary

‣ Early	stopping

‣ For	neural	networks:	dropout	and	gradient	clipping
‣ Large	numbers	of	sparse	features	are	hard	to	overfit	in	a	really	bad	way

LogisIc	Regression:	Summary
‣Model

‣ Learning:	gradient	ascent	on	the	(regularized)	discriminaIve	log-likelihood

‣ Inference

argmaxyP (y|x)

P (y = 1|x) � 0.5 , w

>
x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(

Pn
i=1 wixi)

Perceptron/SVM

Perceptron

‣ Simple	error-driven	learning	approach	similar	to	logisIc	regression

‣ Decision	rule:

‣ Guaranteed	to	eventually	separate	the	data	if	the	data	are	separable

‣ If	incorrect:	if	posiIve,	
if	negaIve,	

w w + x

w w � x

w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

LogisIc	Regressionw

>
x > 0

Support	Vector	Machines

‣Many	separaIng	hyperplanes	—	is	there	a	best	one?

+++ +
+ +
++

- - -
-

-

Support	Vector	Machines

‣Many	separaIng	hyperplanes	—	is	there	a	best	one?

++
+ +

+
+

++

- - -
-

- margin

Support	Vector	Machines
‣ Constraint	formulaIon:	find	w	via	following	quadraIc	program:

Minimize

s.t.

As	a	single	constraint:

minimizing	norm	with	
fixed	margin	<=>	
maximizing	margin

kwk22
8j w

>
xj � 1 if yj = 1

w

>
xj  �1 if yj = 0

8j (2yj � 1)(w>
xj) � 1

‣ Generally	no	soluIon	(data	is	generally	non-separable)	—	need	slack!

N-Slack	SVMs

Minimize

s.t. 8j (2yj � 1)(w>
xj) � 1� ⇠j 8j ⇠j � 0

‣ The						are	a	“fudge	factor”	to	make	all	constraints	saIsfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take	the	gradient	of	the	objecIve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks	like	the	perceptron!	But	updates	more	frequently

Gradients	on	PosiIve	Examples
LogisIc	regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w

>
x))

x if w>
x < 0, else 0

SVM	(ignoring	regularizer)

Hinge	(SVM)

LogisIc
Perceptron

0-1

Lo
ss

w

>
x

*gradients	are	for	maximizing	things,	
which	is	why	they	are	flipped

x if w>
x < 1, else 0

Comparing	Gradient	Updates	(Reference)

x(y � P (y = 1|x))
x(y � logistic(w

>
x))

Perceptron
if	classified	incorrectly

0	else

SVM
if	not	classified	correctly	with	margin	of	1

0	else

(2y � 1)x

(2y � 1)x

=

y	=	1	for	pos,	
						0	for	neg

LogisIc	regression	(unregularized)

OpImizaIon

Structured	PredicIon
‣ Four	elements	of	a	structured	machine	learning	method:

‣Model:	probabilisIc,	max-margin,	deep	neural	network

‣ ObjecIve

‣ Inference:	just	maxes	and	simple	expectaIons	so	far,	but	will	get	harder

‣ Training:	gradient	descent?

OpImizaIon

‣ StochasIc	gradient	*ascent*
‣ Very	simple	to	code	up
‣ “First-order”	technique:	only	relies	on	having	gradient

‣ Newton’s	method
‣ Second-order	technique

Inverse	Hessian:	n	x	n	mat,	expensive!
‣ OpImizes	quadraIc	instantly

‣ Quasi-Newton	methods:	L-BFGS,	etc.	approximate	inverse	Hessian

‣ Setng	step	size	is	hard	(decrease	when	held-out	performance	worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

‣ Can	avg	gradient	over	a	few	examples	and	apply	update	once	(minibatch)

AdaGrad

Duchi	et	al.	(2011)

‣ OpImized	for	problems	with	sparse	features

‣ Per-parameter	learning	rate:	smaller	updates	are	made	to	parameters	
that	get	updated	frequently

(smoothed)	sum	of	squared	
gradients	from	all	updates

‣ Generally	more	robust	than	SGD,	requires	less	tuning	of	learning	rate

‣ Other	techniques	for	opImizing	deep	models	—	more	later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

ImplementaIon

‣ Supposing	k	acIve	features	on	an	instance,	gradient	is	only	nonzero	
on	k	dimensions

‣ In	PyTorch:	applying	sparse	gradients	only	works	for	certain	
opImizers	and	sparse	updates	are	very	slow.	The	code	we	give	you	is	
much	faster

w w + ↵g, g =
@

@w
L

‣ k	<	100,	total	num	features	=	1M+	on	many	problems

‣ Be	smart	about	applying	updates!

SenIment	Analysis

SenIment	Analysis

Bo	Pang,	Lillian	Lee,	Shivakumar	Vaithyanathan	(2002)

the	movie	was	gross	and	overwrought,	but	I	liked	it

this	movie	was	great!	would	watch	again

‣ Bag-of-words	doesn’t	seem	sufficient	(discourse	structure,	negaIon)

this	movie	was	not	really	very	enjoyable

‣ There	are	some	ways	around	this:	extract	bigram	feature	for	“not	X”	for	
all	X	following	the	not

+
+
—

SenIment	Analysis

‣ Simple	feature	sets	can	do	preny	well!	

Bo	Pang,	Lillian	Lee,	Shivakumar	Vaithyanathan	(2002)

SenIment	Analysis

Wang	and	Manning	(2012)

Before	neural	nets	had	taken	off	
—	results	weren’t	that	great

Naive	Bayes	is	doing	well!

Ng	and	Jordan	(2002)	—	NB	
can	be	bener	for	small	data

81.5				89.5Kim	(2014)	CNNs

SenIment	Analysis

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.md

…

‣ Best	systems	now:	
large	pretrained	
networks

‣ Stanford	SenIment	
Treebank	(SST)	
binary	classificaIon

‣ 90	->	97	over	the	
last	2	years

Recap

‣ LogisIc	regression:
P (y = 1|x) =

exp (

Pn
i=1 wixi)

(1 + exp (

Pn
i=1 wixi))

Gradient	(unregularized):

‣ SVM:

Decision	rule:	

Decision	rule:	w>
x � 0

P (y = 1|x) � 0.5 , w

>
x � 0

(Sub)gradient	(unregularized):	0	if	correct	with	margin	of	1,	else

x(y � P (y = 1|x))

x(2y � 1)

Recap

‣ LogisIc	regression,	SVM,	and	perceptron	are	closely	related

‣ SVM	and	perceptron	inference	require	taking	maxes,	logisIc	regression	
has	a	similar	update	but	is	“so}er”	due	to	its	probabilisIc	nature

‣ All	gradient	updates:	“make	it	look	more	like	the	right	thing	and	less	
like	the	wrong	thing”

‣ Next	Ime:	mulIclass	classificaIon

