CS388: Natural Language Processing

Class 0

Lecture 2: Binary -4

(0
a’as e'[o

Classification Class 1

Perfectly balanced...

\

_

Greg Durrett

...As all things should be

credit: Machine Learning Memes on Facebook

Some slides adapted from Vivek Srikumar, University of Utah

Administrivia

» Course enrollment
» Course website: slides, readings, office hours, syllabus
» Mini 1 out, due Tuesday

» Greg’s office hours on Thursday are rescheduled to 9am-10am

This Lecture

» Linear classification fundamentals

» Three discriminative models: logistic regression, perceptron, SVM

» Different motivations but very similar update rules / inference!

» Optimization

» Sentiment analysis

Classification

Classification

» Datapoint 2 with label ¥ € {0,1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

» Linear decision rule:w ' f(xz) +b >0

w' f(z) >0

» Can delete bias if we augment feature space:

f(x)=1[0.5,1.6,0.3]
v
0.5, 1.6, 0.3, 1]

Linear functions are powerful!

f{x) =[xz, x2]

X1X2

—
—
—
—
—
—
—
—
—
—
—
—
—
— -

o
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

fix) = [x1, x2, x1%, X2, X1x2]

» “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n*) instead of O(n - (num feats))

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
» Pick a model / learning algorithm

» Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

» Very large vector space (size of vocabulary), sparse features (how many?)
» Requires indexing the features (mapping them to axes)

» More sophisticated feature mappings possible (tf-idf), as well as lots of
other features: n-grams, character n-grams, parts of speech, lemmas, ...

Generative vs. Discriminative Modeling

» Data point * = ($1, 7$n) , label y € {0, 1}
» Generative models: probabilistic models of P(x,y)

» Compute P(y|z), predict argmax, P(y|r) to classify

Pyl = PWPE)

P(x
) PWPGly

“proportional to”

» Examples: Naive Bayes (see textbook), Hidden Markov Models

» Discriminative models model P(y|x) directly, compute argmaxyP(y|x)
» Examples: logistic regression

» Cannot draw samples of x, but typically better classifiers

Logistic Regression

Logistic Regression

P(y = +|z) = logistic(w ') /
EXP ?: Ww,; 5 >
Py = +|z) = iy i)
1 +exp(D>_,_; wix;)

—0 -4 —2 0 2 4 6

» To learn weights: maximize discriminative log likelihood of data (log P(y|x))

,C({le‘j, yj}jzl 77777 n) — Z lOg P(yj|33]) COFpUS-'EVGl LL

]
L:(mj’ Y = +) — log P(yj — H%) one (positive) example LL

_ szxﬁ log (1 + exp (Z wzx]fL))

sum over features— i—1

Logistic Regression

Logistic Regression

» Gradient of w; on positive example = CEjz'(l — P(yj — HCE]'))
If P(+) is close to 1, make very little update
Otherwise make w;look more like x;;, which will increase P(+)
» Gradient of w; on negative example = z;;(—P(y; = +|x,))

If P(+) is close to 0, make very little update
Otherwise make w;look less like x;j;, which will decrease P(+)

» Let y; = 1 for positive instances, y; = 0 for negative instances.

» Can combine these gradients as :Uj(yj — P(yj — 1\1’]’))

g'/(l) this movie was great! would watch again + fixz) =1 1]
(2) | expected a great movie and left happy + f(x2) =[1 1]
(3) great potential but ended up being a flop — flxs) = [1 0]

--

[contains great] [contains movie]

w=1[0,0] — P(y=1 | x1) =exp(0)/(1+exp(0)) =0.5 — g=[0.5,0.5]

w =[0.5,0.5] — P(y=1| x;) = logistic(1) = 0.75 g = [0.25, 0.25]

w =10.75, 0.75] = P(y = 1 | x3) = logistic(0.75) = 0.67

w=[0.08,0.75] .- Ply = +]z) = logistic(w)
- zy(y; — Ply; = 1zy))

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L) y5) = w3
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
» Early stopping
» Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping

Logistic Regression: Summary

» Model

P(y _ |£IZ‘) _ eXP(Z?ﬂ UJ@.CEZ)
1+ eXp(Z?:l wzmz)

» Inference
argmax, P(y|z)
Ply=1lz) >05<w' >0

» Learning: gradient ascent on the (regularized) discriminative log-likelihood

Perceptron/SVM

Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decisionrule: w 'z > 0 Logistic Regression

» If incorrect: if positive, w < w + x w<—w+x(l — Py =1|z))

if negative, w < w — @ EUJ%@U—MD(?J:HI’)

» Guaranteed to eventually separate the data if the data are separable

Support Vector Machines

» Many separating hyperplanes — is there a best one?

| +
\\ \
\\\\ \ + + .|_
~ - \ + +
~ Rl \
~ ~
~ = A
\\ \\\\
~ ~
~ \ S~
~ ~
o \ ~ o
\\ \ \\\
\\ \ =~
~ ~
- -\\\ \\\
- _ - \\\
- \ S

Support Vector Machines

» Many separating hyperplanes — is there a best one?

~
RS
~
~
~
~§
~
~§
~
~
~
~
~
§~~
~
S
5' +
~
~ RS
S
~ S
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ \
"~~ ~ S
~§~ \' ~~
~~~ ~
s ~ “a
~ RS
~~~ ~ S
~~~ ~ ~~~
~~~ ~ ~~~
~~~ ~ ~“~
~~~ ~, ~~~
~~~ ~ ~~~
~~~ ~ ~~~
~~~ ~, ~~~
~ o N ~~~
T < ..
~~~ ~ ~~~
e ~ ~~~
Sl ~ S
~ ~§
~o -~ ~.
~ e ~~~
- ~~~ ~,
~~~ ~
- ~~~ ~
~~~ ~
- - “a ~
~§~ ~
~
- Say ~
- "~~ ~
- ~~~ ~
~
~
~
~
- S
~
~
~
~
~§
~
~§
~
~
~
~
~§
S
~

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

minimizing norm with
-

s.t. V) w x; fixed margin <=>

- maximizing margin
Ww $j

As a single constraint:
Vi (2y; — D(w ;) > 1

» Generally no solution (data is generally non-separable) — need slack!

N-Slack SVMs

T
Minimize Al|wl|3 4+ » &
j=1

» The §; are a “fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

0 . 0 |

» Looks like the perceptron! But updates more frequently

Gradients on Positive Examples

Logistic regression
' T

:c(l — logistic(w ' x)) .5 |

Perceptron

a’; if w' x <0, else 0

‘/‘Hinge (SVM)

SVM (ignoring regularizer)

a: if w'z <1, else 0

*gradients are for maximizing things,
which is why they are flipped

Perceptron |

Logistic

-2 -1 0

Comparing Gradient Updates (Reference)

Logistic regression (unregularized) y =1 for pos,

a(y — Py = 1|z)) = 2(y — logistic(w) ~ Oforneg

Perceptron
(2y — 1)z if classified incorrectly

- SVM

Optimization

Structured Prediction

» Four elements of a structured machine learning method:

» Model: probabilistic, max-margin, deep neural network

4

» Objective

35 F
3
2.5 F
o |
1.5 }
1

0.5 F \

0

-3 -2 -1 0 1 2 3

» Inference: just maxes and simple expectations so far, but will get harder

» Training: gradient descent?

Optimization

0

» Stochastic gradient *ascent™ g =
ow

L

W < W + Qg
» Very simple to code up

» “First-order” technique: only relies on having gradient
» Can avg gradient over a few examples and apply update once (minibatch)

» Setting step size is hard (decrease when held-out performance worsens?)

» Newton’s method 0? r !
%
» Second-order technique W W Ow? I

» Optimizes quadratic instantly / |
Inverse Hessian: n X n mat, expensive!

» Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

» Optimized for problems with sparse features

» Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

1
gt;
\/e +5° g2, (smoothed) sum of squared
| gradients from all updates

W, < W; + &

» Generally more robust than SGD, requires less tuning of learning rate

» Other techniques for optimizing deep models — more later!

Duchi et al. (2011)

Implementation

» Supposing k active features on an instance, gradient is only nonzero
on kK dimensions

0
g = Oow
» k<100, total num features = 1M+ on many problems

L

W < W + Ag,

» Be smart about applying updates!

» In PyTorch: applying sparse gradients only works for certain
optimizers and sparse updates are very slow. The code we give you is
much faster

Sentiment Analysis

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it | =+

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features | # of | frequency or || NB ME [SVM

features presence?’

(1) I unigrams ‘ 16165 ‘ freq. H 78.7 | N/A ‘ 72.8
2] umgams | ° | pres | 80| 804] 829
BN o B
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) | unigrams+POS 16695 pres. | 81.5 | 80.4 | 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4
(8) I unigrams-position l 22430 l pres. I] 81.0 l 80.1 l 81.6

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Method RT-s MPQA
MNB-uni 7719 85.3
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-um1 | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Kim (2014) CNNs [81.5 89.5

720 86.3 | «—— Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be better for small data

Before neural nets had taken off
— results weren’t that great

Wang and Manning (2012)

Sentiment Analysis

. Model Accuracy Paper /| Source Code
» Stanford Sentiment
XLNet-Large (ensemble) (Yang et al., XLNet: Generalized Autoregressive Pretraining .
96.8 _ Official
Tree ba N k (SST) 2019) for Language Understanding
b . I ﬁ tl Improving Multi-Task Deep Neural Networks
INd ry ciassincation MT-DNN-ensemble (Liu et al., 2019) 96.5 via Knowledge Distillation for Natural Language Official
Understanding
} BESt SySte mMsS NOW. Snorkel MeTalL(ensemble) (Ratner et 96.9 Training Complex Models with Multi-Task Weak Official
al., 2018) ' Supervision

large pretrained

Multi-Task Deep Neural Networks for Natural

MT-DNN (Liu et al., 2019) 95.6 , Official
N EtWO r kS Language Understanding
Bidirectional Encoder . L
Representations from Transformers 94.9 BERT: Pre-training of Deep Bidirectional Official
> 90 -> 97 over th e (D::vlin et al.. 2018) ' Transformers for Language Understanding
last 2 years

Neural Semantic Encoder

, 89.7 Neural Semantic Encoders
(Munkhdalai and Yu, 2017)

Text Classification Improved by Integrating
BLSTM-2DCNN (Zhou et al., 2017) 89.5 Bidirectional LSTM with Two-dimensional Max
Pooling

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment analysis.md

Recap

» Logistic regression: P(y = 1|x) = eXP (Q_j—q Wii)

(1 +exp (32 wiwi))
Decisionrule: P(y=1lz) > 05 < w' z >0

Gradient (unregularized): z(y — P(y = 1|x))

» SVM:

Decision rule: w ' > ()

(Sub)gradient (unregularized): 0 if correct with margin of 1, else z(2y — 1)

Recap

» Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

» All gradient updates: “make it look more like the right thing and less
like the wrong thing”

» Next time: multiclass classification

