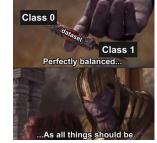
CS388: Natural Language Processing

Lecture 2: Binary Classification



Greg Durrett

TEXAS

The University of Teyas at Austin

credit: Machine Learning Memes on Facebook

Some slides adapted from Vivek Srikumar, University of Utah

Administrivia

- ▶ Course enrollment
- ▶ Course website: slides, readings, office hours, syllabus
- ▶ Mini 1 out, due Tuesday
- ▶ Greg's office hours on Thursday are rescheduled to 9am-10am

This Lecture

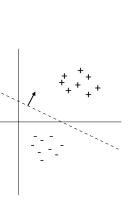
- ▶ Linear classification fundamentals
- ▶ Three discriminative models: logistic regression, perceptron, SVM
- ▶ Different motivations but very similar update rules / inference!
- Optimization
- ▶ Sentiment analysis

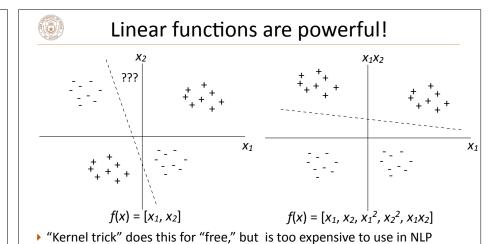
Classification

Classification

- ▶ Datapoint x with label $y \in \{0, 1\}$
- Figure Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$ but in this lecture f(x) and x are interchangeable
- ▶ Linear decision rule: $w^{\top}f(x) + b > 0$ $w^{\top}f(x) > 0 \quad _$
- ▶ Can delete bias if we augment feature space:

$$f(x) = [0.5, 1.6, 0.3]$$
 \downarrow
 $[0.5, 1.6, 0.3, 1]$





Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was <mark>awful,</mark> I'll never watch again

Negative

- Surface cues can basically tell you what's going on here: presence or absence of certain words (great, awful)
- ▶ Steps to classification:
 - ▶ Turn examples like this into feature vectors
 - ▶ Pick a model / learning algorithm
 - ▶ Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again

Positive

▶ Convert this example to a vector using bag-of-words features

applications, training is $O(n^2)$ instead of $O(n \cdot (\text{num feats}))$

[contains the] [contains a] [contains was] [contains movie] [contains film] ... position 0 position 1 position 2 position 3 position 4

f(x) = [0

0

1

1

- 0
- ▶ Very large vector space (size of vocabulary), sparse features (how many?)
- ▶ Requires *indexing* the features (mapping them to axes)
- ▶ More sophisticated feature mappings possible (tf-idf), as well as lots of other features: n-grams, character n-grams, parts of speech, lemmas, ...

Generative vs. Discriminative Modeling

- ▶ Data point $x = (x_1, ..., x_n)$, label $y \in \{0, 1\}$
- ▶ Generative models: probabilistic models of P(x,y)
 - ightharpoonup Compute P(y|x), predict $\operatorname{argmax}_y P(y|x)$ to classify

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)} \propto P(y)P(x|y) \label{eq:posterior}$$
 "proportional to"

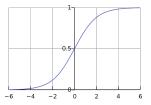
- ▶ Examples: Naive Bayes (see textbook), Hidden Markov Models
- lacktriangle Discriminative models model P(y|x) directly, compute $\operatorname{argmax}_{y}P(y|x)$
 - ▶ Examples: logistic regression
 - Cannot draw samples of x, but typically better classifiers

Logistic Regression

Logistic Regression

$$P(y = +|x) = \operatorname{logistic}(w^{\top}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$



▶ To learn weights: maximize discriminative log likelihood of data (log P(y|x))

$$\mathcal{L}(\{x_j,y_j\}_{j=1,\dots,n}) = \sum_j \log P(y_j|x_j) \qquad \text{corpus-level LL}$$

$$\mathcal{L}(x_j,y_j=+) = \log P(y_j=+|x_j) \qquad \text{one (positive) example LL}$$

$$= \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right)\right)$$
 sum over features

Logistic Regression

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j) = \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right) \right)$$

$$\frac{\partial \mathcal{L}(x_j, y_j)}{\partial w_i} = x_{ji} - \frac{\partial}{\partial w_i} \log \left(1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right) \right)$$

$$= x_{ji} - \frac{1}{1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right)} \frac{\partial}{\partial w_i} \left(1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right) \right)$$

$$= x_{ji} - \frac{1}{1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right)} x_{ji} \exp \left(\sum_{i=1}^n w_i x_{ji} \right)$$

$$= x_{ji} - x_{ji} \frac{\exp \left(\sum_{i=1}^n w_i x_{ji} \right)}{1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right)} = x_{ji} (1 - P(y_j = +|x_j))$$

Logistic Regression

- ullet Gradient of \emph{w}_i on positive example $=x_{ji}(1-P(y_j=+|x_j))$
 - If P(+) is close to 1, make very little update Otherwise make w_i look more like x_{ii} , which will increase P(+)
- Gradient of w_i on negative example $= x_{ji}(-P(y_j = +|x_j))$ If P(+) is close to 0, make very little update Otherwise make w_i look less like x_{ii} , which will decrease P(+)
- Let $y_i = 1$ for positive instances, $y_i = 0$ for negative instances.
- Can combine these gradients as $x_i(y_i P(y_i = 1|x_i))$

Example

(1) this movie was great! would watch again + $f(x_1) = [1 1]$ (2) I expected a great movie and left happy + $f(x_2) = [1 1]$ (3) great potential but ended up being a flop $f(x_3) = [1 0]$

[contains *great*] [contains *movie*] position 0 position 1

$$w = [0, 0] \longrightarrow P(y = 1 \mid x_1) = \exp(0)/(1 + \exp(0)) = 0.5 \longrightarrow g = [0.5, 0.5]$$

 $w = [0.5, 0.5] \longrightarrow P(y = 1 \mid x_2) = \text{logistic}(1) \approx 0.75 \longrightarrow g = [0.25, 0.25]$
 $w = [0.75, 0.75] \longrightarrow P(y = 1 \mid x_3) = \text{logistic}(0.75) \approx 0.67 \longrightarrow g = [-0.67, 0]$

$$w = [0.08, 0.75]$$
 ...
$$P(y = +|x) = \text{logistic}(w^{T}x)$$
$$x_{j}(y_{j} - P(y_{j} = 1|x_{j}))$$

Regularization

Regularizing an objective can mean many things, including an L2norm penalty to the weights:

$$\sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda ||w||_2^2$$

- ▶ Keeping weights small can prevent overfitting
- For most of the NLP models we build, explicit regularization isn't necessary
 - Early stopping
 - Large numbers of sparse features are hard to overfit in a really bad way
 - ▶ For neural networks: dropout and gradient clipping

Logistic Regression: Summary

Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

▶ Inference

$$\operatorname{argmax}_{u} P(y|x)$$

$$P(y = 1|x) \ge 0.5 \Leftrightarrow w^{\top} x \ge 0$$

▶ Learning: gradient ascent on the (regularized) discriminative log-likelihood

Perceptron/SVM

Perceptron

- ▶ Simple error-driven learning approach similar to logistic regression
- $\ \, \text{ Decision rule: } w^\top x > 0$

▶ If incorrect: if positive, $w \leftarrow w + x$ if negative, $w \leftarrow w - x$

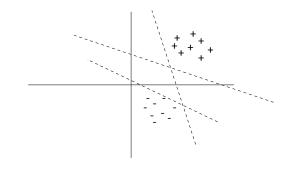
Logistic Regression

$$w \leftarrow w + x(1 - P(y = 1|x))$$
$$w \leftarrow w - xP(y = 1|x)$$

▶ Guaranteed to eventually separate the data if the data are separable

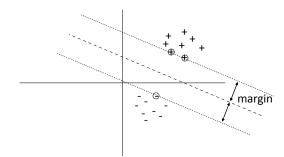
Support Vector Machines

▶ Many separating hyperplanes — is there a best one?



Support Vector Machines

▶ Many separating hyperplanes — is there a best one?



Support Vector Machines

▶ Constraint formulation: find w via following quadratic program:

Minimize
$$\|w\|_2^2$$

s.t. $\forall j \ w^\top x_j \ge 1 \text{ if } y_j = 1$
 $w^\top x_j \le -1 \text{ if } y_j = 0$

minimizing norm with fixed margin <=> maximizing margin

As a single constraint:

$$\forall j \ (2y_j - 1)(w^\top x_j) \ge 1$$

Generally no solution (data is generally non-separable) — need slack!

N-Slack SVMs

- lacktriangle The ξ_j are a "fudge factor" to make all constraints satisfied
- ▶ Take the gradient of the objective:

$$\frac{\partial}{\partial w_i} \xi_j = 0 \text{ if } \xi_j = 0$$

$$\frac{\partial}{\partial w_i} \xi_j = (2y_j - 1)x_{ji} \text{ if } \xi_j > 0$$

$$= x_{ji} \text{ if } y_j = 1, -x_{ji} \text{ if } y_j = 0$$

▶ Looks like the perceptron! But updates more frequently

Gradients on Positive Examples

Logistic regression

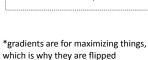
$$x(1 - \operatorname{logistic}(w^{\top}x))$$

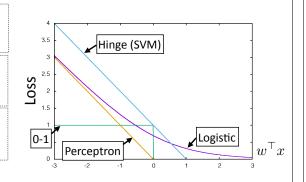
Perceptron

$$x \text{ if } w^{\top}x < 0, \text{ else } 0$$

SVM (ignoring regularizer)

$$x \text{ if } w^{\top}x < 1, \text{ else } 0$$





Comparing Gradient Updates (Reference)

Logistic regression (unregularized)

$$x(y - P(y = 1|x)) = x(y - \text{logistic}(w^{\top}x))$$

y = 1 for pos, 0 for neg

Perceptron

(2y-1)x if classified incorrectly

0 else

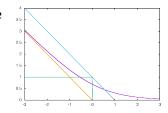
SVM

(2y-1)x if not classified correctly with margin of 1 0 else

Optimization

Structured Prediction

- ▶ Four elements of a structured machine learning method:
- ▶ Model: probabilistic, max-margin, deep neural network
- Objective



- Inference: just maxes and simple expectations so far, but will get harder
- ▶ Training: gradient descent?

Optimization

▶ Stochastic gradient *ascent*

$$w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

- ▶ Very simple to code up
- "First-order" technique: only relies on having gradient
- ▶ Can avg gradient over a few examples and apply update once (minibatch)
- ▶ Setting step size is hard (decrease when held-out performance worsens?)
- ▶ Newton's method

- $w \leftarrow w + \left(\frac{\partial^2}{\partial w^2} \mathcal{L}\right)^{-1} g$
- Second-order techniqueOptimizes quadratic instantly
- Inverse Hessian: n x n mat, expensive!
- Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

$$w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^t g_{\tau,i}^2}} g_{t_i} \qquad \text{(smoothed) sum of squared gradients from all updates}$$

- ▶ Generally more robust than SGD, requires less tuning of learning rate
- ▶ Other techniques for optimizing deep models more later!

Duchi et al. (2011)

Implementation

▶ Supposing *k* active features on an instance, gradient is only nonzero on *k* dimensions

$$w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

- k < 100, total num features = 1M+ on many problems
- ▶ Be smart about applying updates!
- ▶ In PyTorch: applying sparse gradients only works for certain optimizers and sparse updates are very slow. The code we give you is much faster

Sentiment Analysis

Sentiment Analysis

this movie was great! would watch again

+

the movie was gross and overwrought, but I liked it

+

this movie was <mark>not</mark> really very <mark>enjoyable</mark>

- ▶ Bag-of-words doesn't seem sufficient (discourse structure, negation)
- ▶ There are some ways around this: extract bigram feature for "not X" for all X following the not

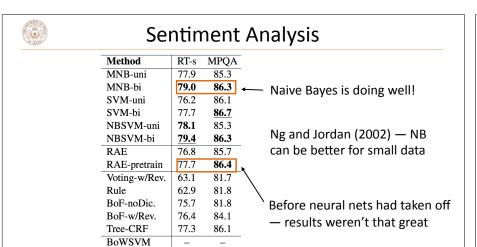
Sentiment Analysis

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

▶ Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



www.	Sentiment A	Milai	yolo				
Stanford Sentiment	Model	Accuracy	Paper / Source	Code			
Treebank (SST)	XLNet-Large (ensemble) (Yang et al., 2019)	96.8	XLNet: Generalized Autoregressive Pretraining for Language Understanding	Official			
binary classification	MT-DNN-ensemble (Liu et al., 2019)	96.5	Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding	Official			
Best systems now: large pretrained	Snorkel MeTaL(ensemble) (Ratner et al., 2018)	96.2	Training Complex Models with Multi-Task Weak Supervision	Official			
networks	MT-DNN (Liu et al., 2019)	95.6 Multi-Task Deep Neural Networks for Natural Language Understanding		Official			
▶ 90 -> 97 over the	Bidirectional Encoder Representations from Transformers (Devlin et al., 2018)	94.9	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding				
last 2 years	•••						
	Neural Semantic Encoder (Munkhdalai and Yu, 2017) 89.7 Neural Semantic		Neural Semantic Encoders				
	BLSTM-2DCNN (Zhou et al., 2017)	89.5	Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling				

Recap

- ▶ Logistic regression: $P(y=1|x) = \frac{\exp\left(\sum_{i=1}^n w_i x_i\right)}{\left(1 + \exp\left(\sum_{i=1}^n w_i x_i\right)\right)}$
 - Decision rule: $P(y=1|x) \geq 0.5 \Leftrightarrow w^{\top}x \geq 0$
 - Gradient (unregularized): x(y P(y = 1|x))

Kim (2014) CNNs 81.5 89.5

▶ SVM:

Decision rule: $w^{\top}x \geq 0$

(Sub)gradient (unregularized): 0 if correct with margin of 1, else x(2y-1)

Wang and Manning (2012)

Recap

- ▶ Logistic regression, SVM, and perceptron are closely related
- ▶ SVM and perceptron inference require taking maxes, logistic regression has a similar update but is "softer" due to its probabilistic nature
- ▶ All gradient updates: "make it look more like the right thing and less like the wrong thing"
- ▶ Next time: multiclass classification