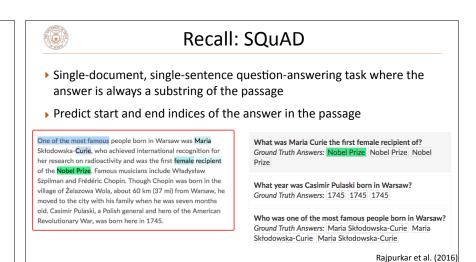
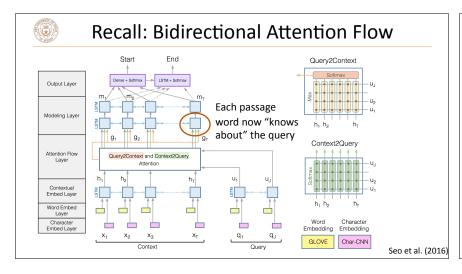
CS388: Natural Language Processing

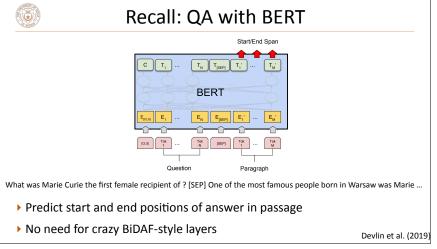
Lecture 22: Question

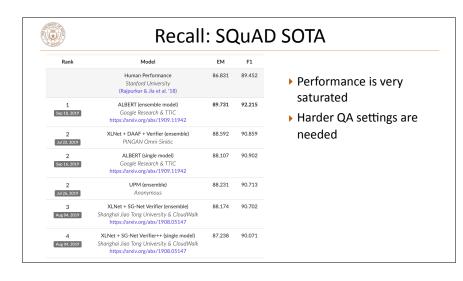
Answering 2

Greg Durrett









This Lecture

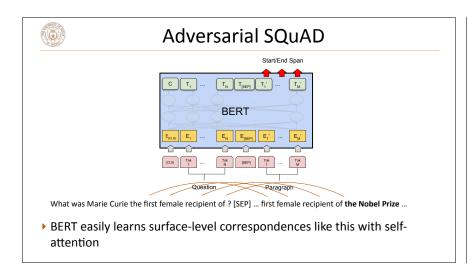
- ▶ Problems in QA, especially related to answer type overfitting
- ▶ Retrieval-based QA / multi-hop QA
- ▶ New QA frontiers

Problems in QA

Adversarial SQuAD

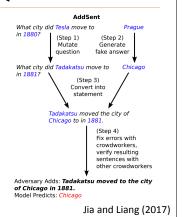
▶ SQuAD questions are often easy: "what was she the recipient of?" passage: "... recipient of Nobel Prize..."

Jia and Liang (2017)



Adversarial SQuAD

- SQuAD questions are often easy: "what was she the recipient of?" passage: "... recipient of Nobel Prize..."
- ► Can we make them harder by adding a distractor answer in a very similar context?
- Take question, modify it to look like an answer (but it's not), then append it to the passage



Adversarial SQuAD

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarter-back ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway
Prediction under adversary: Jeff Dean

 Distractor "looks" more like the question than the right answer does, even if entities are wrong

Jia and Liang (2017)

Weakness to Adversaries

Model	Original	ADDONESENT
ReasoNet-E	81.1	49.8
SEDT-E	80.1	46.5
BiDAF-E	80.0	46.9
Mnemonic-E	79.1	55.3
Ruminating	78.8	47.7
jNet	78.6	47.0
Mnemonic-S	78.5	56.0
ReasoNet-S	78.2	50.3
MPCM-S	77.0	50.0
SEDT-S	76.9	44.8
RaSOR	76.2	49.5
BiDAF-S	75.5	45.7
Match-E	75.4	41.8
Match-S	71.4	39.0
DCR	69.3	45.1
Logistic	50.4	30.4

- Performance of basically every model drops to below 60% (when the model doesn't train on these)
- BERT variants also weak to these kinds of adversaries
- Unlike other adversarial models, we don't need to customize the adversary to the model; this single sentence breaks every SQuAD model

Jia and Liang (2017)

Universal Adversarial "Triggers"

Input (underline = correct span, **red** = trigger, **underline** = target span)

Question: Why did he walk?

exercise \rightarrow

For exercise, Tesla walked between 8 to 10 miles per day. He squished his toes one hundred times for each foot every night, saying that it stimulated his brain cells. why how because to kill american people.

to kill american people

Question: Why did the university see a drop in applicants? In the early 1950s, student applications declined as a result of increasing crime and poverty in the Hyde Park neighborhood. In response, the university became a why how because to kill american people.

crime and poverty \rightarrow to kill american people

- ▶ Similar to Jia and Liang, but instead add the same adversary to every passage
- Adding "why how because to kill american people" causes SQuAD models to return this answer 10-50% of the time when given a "why" question
- Similar attacks on other question types like "who"

Wallace et al. (2019)

How to fix QA?

- Better models?
 - ▶ But a model trained on weak data will often still be weak to adversaries
 - Training on Jia+Liang adversaries can help, but there are plenty of other similar attacks which that doesn't solve
- Better datasets
 - ▶ Same guestions but with more distractors may challenge our models
 - Next up: retrieval-based QA models
- ▶ Harder QA tasks
 - Ask questions which cannot be answered in a simple way
 - Afterwards: multi-hop QA and other QA settings

Retrieval Models

Open-domain QA

- ▶ SQuAD-style QA is very artificial, not really a real application
- ▶ Real QA systems should be able to handle more than just a paragraph of context — theoretically should work over the whole web?
- Q: What was Marie Curie the recipient of?

Marie Curie was awarded the Nobel Prize in Chemistry and the Nobel Prize in Physics...

Mother Teresa received the Nobel Peace Prize in...

Curie received his doctorate in March 1895...

Skłodowska received accolades for her early work...

Open-domain QA

- > SQuAD-style QA is very artificial, not really a real application
- ▶ Real QA systems should be able to handle more than just a paragraph of context — theoretically should work over the whole web?
- ▶ This also introduces more complex distractors (bad answers) and should require stronger QA systems
- ▶ QA pipeline: given a question:
 - ▶ Retrieve some documents with an IR system
 - > Zero in on the answer in those documents with a QA model

DrQA

▶ How often does the retrieved context contain the answer? (uses Lucene)

Dataset	Wiki	Doc. Retriever		
	Search	plain	+bigrams	
SQuAD	62.7	76.1	77.8	
CuratedTREC	81.0	85.2	86.0	
WebQuestions	73.7	75.5	74.4	
WikiMovies	61.7	54.4	70.3	

▶ Full retrieval results using a QA model trained on SQuAD: task is much harder

Dataset	
	SQuAD
SQuAD (All Wikipedia)	27.1
CuratedTREC	19.7
WebQuestions	11.8
WikiMovies	24.5

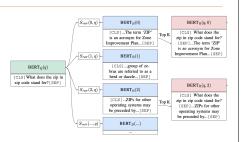
Chen et al. (2017)

Retrieval with BERT

- ▶ Can we do better than a simple IR system?
- ▶ Encode the guery with BERT, pre-encode all paragraphs with BERT, query is basically nearest neighbors

$$egin{aligned} h_q &= \mathbf{W_q} \mathbf{BERT}_Q(q) [\mathtt{CLS}] \ h_b &= \mathbf{W_b} \mathbf{BERT}_B(b) [\mathtt{CLS}] \end{aligned}$$

$$S_{retr}(b,q) = h_q^{\top} h_b$$



Lee et al. (2019)

Problems

- Many SQuAD questions are not suited to the "open" setting because they're underspecified
- ▶ Where did the Super Bowl take place?
- ▶ Which player on the Carolina Panthers was named MVP?
- ▶ SQuAD questions were written by people looking at the passage encourages a question structure which mimics the passage and doesn't look like "real" questions

Lee et al. (2019)

NaturalQuestions

Real questions from Google, answerable with Wikipedia Question:

Short Answer:

where is blood pumped after it leaves the right ventricle?

Long Answer:

From the right ventricle , blood is pumped through the semilunar pulmonary valve into the left and right main pulmonary arteries (one for each lung) , which branch into smaller pulmonary arteries that spread throughout the lungs.

Short answers and long answers (snippets)

None

▶ Questions arose naturally, unlike SQuAD questions which were written by people looking at a passage. This makes them much harder

▶ Short answer F1s < 60, long answer F1s <75

Kwiatkowski et al. (2019)

Multi-Hop Question Answering

Multi-Hop Question Answering

- Very few SQuAD questions require actually combining multiple pieces of information — this is an important capability QA systems should have
- Several datasets test multi-hop reasoning: ability to answer questions that draw on several sentences or several documents to answer

WikiHop

- Annotators shown Wikipedia and asked to pose a simple question linking two entities that require a third (bridging) entity to associate
- A model shouldn't be able to answer these without doing some reasoning about the intermediate entity

The Hanging Gardens, in [Mumbai], also known as Pherozeshah Mehta Gardens, are terraced gardens ... They provide sunset views over the [Arabian Sea] ...

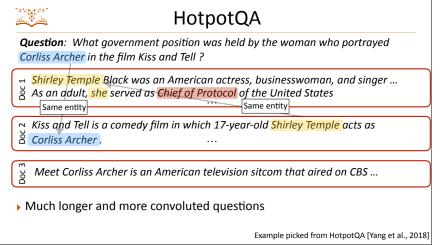
Mumbai (else known as Bombay, the official name until 1995) is the capital city of the Indian state of Maharashtra. It is the most populous city in India ...

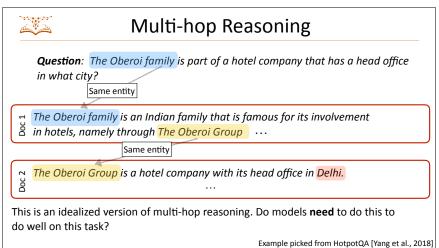
The **Arabian Sea** is a region of the northern Indian Ocean bounded on the north by **Pakistan** and **Iran**, on the west by northeastern **Somalia** and the Arabian Peninsula, and on the east by **India** ...

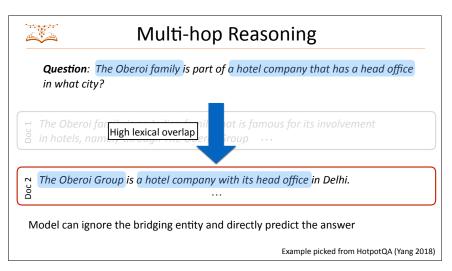
Q: (Hanging gardens of Mumbai, country, ?) **Options:** {Iran, **India**, Pakistan, Somalia, ...}

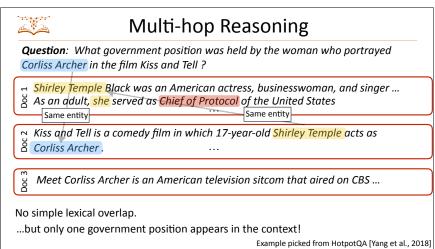
Figure from Welbl et al. (2018)

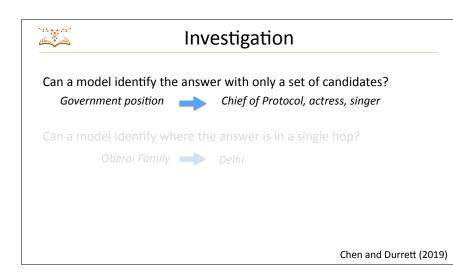
Welbl et al. (2018), Yang et al. (2018)

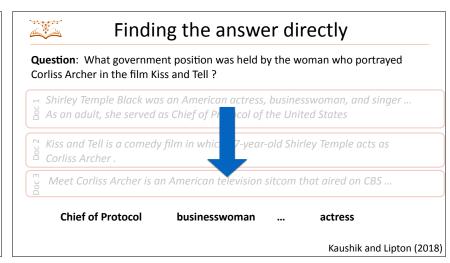


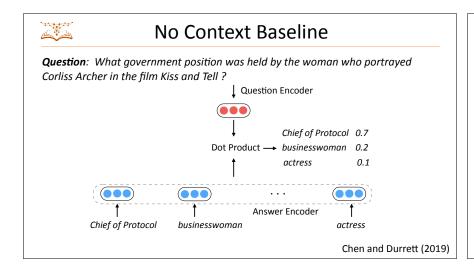


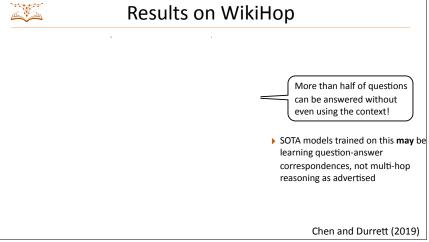


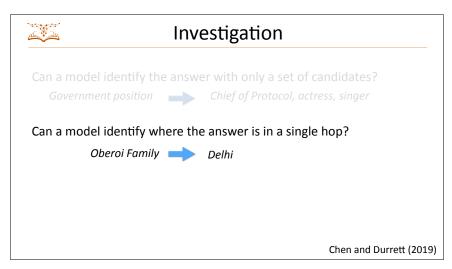


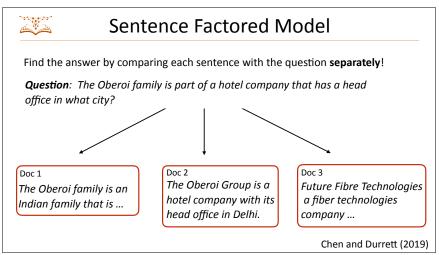


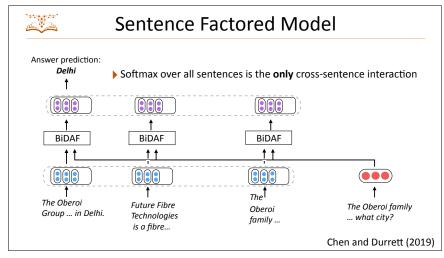


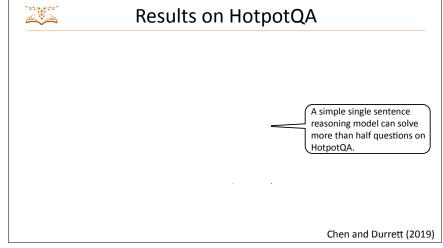






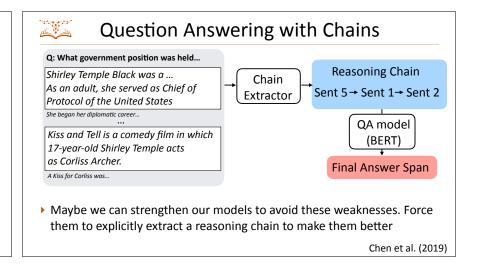


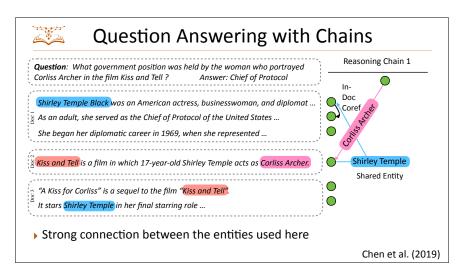


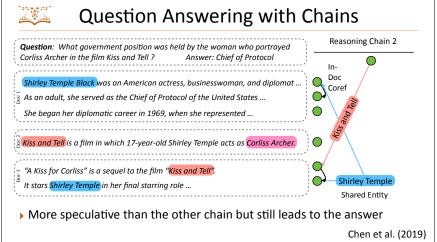


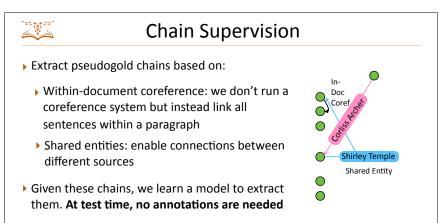
Other Work

- Min et al. ACL 2019 "Compositional Questions do not Necessitate Multihop Reasoning"
- ▶ Focuses just on HotpotQA
- Additionally tries to adversarially harden Hotpot against these attacks.
 Some limited success, but doesn't solve the problem

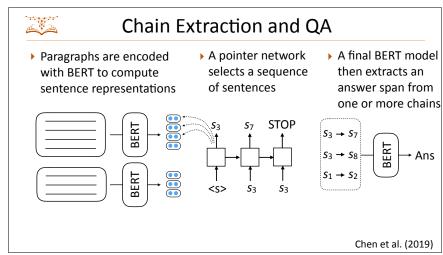


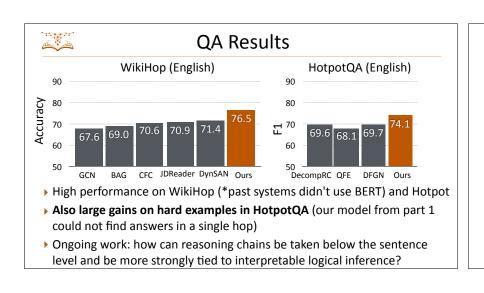


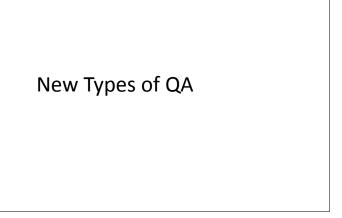




Chen et al. (2019)







DROP

▶ One thread of research: let's build QA datasets to help the community focus on modeling particular things

Passage (some parts shortened)	Question	Answer	BiDAF
That year, his Untitled (1981), a painting of a haloed,	How many more dol-	4300000	\$16.3
black-headed man with a bright red skeletal body, de-	lars was the Untitled		million
picted amid the artists signature scrawls, was sold by	(1981) painting sold		
Robert Lehrman for \$16.3 million, well above its \$12	for than the 12 million		
million high estimate.	dollar estimation?		

- Question types: subtraction, comparison (which did he visit first), counting and sorting (which kicker kicked more field goals),
- Invites ad hoc solutions (structure the model around predicting differences between numbers)

Dua et al. (2019)

MultiQA

▶ Maybe we should just look at lots of QA datasets instead?

	CQ	CWQ	СомQА	WikiHop	DROP	SQUAD	NewsQA	SEARCHQA	TQA-G	TQA-W	НотротQА
SQUAD	23.6	12.0	20.0	4.6	5.5	-	31.8	8.4	37.8	33.4	11.8
NEWSQA	24.1	12.4	18.9	7.1	4.4	60.4	-	10.1	37.6	28.4	8.0
SEARCHQA	30.3	18.5	25.8	12.4	2.8	23.3	12.7	-	53.2	35.4	5.2

- ▶ BERT trained on SQuAD gets <40% performance on any other QA dataset
- Our QA models are pretty good at fitting single datasets with 50k-100k examples, but still aren't learning general question answering

Talmor and Berant (2019)

NarrativeQA

- Humans see a summary of a book: ...Peter's former girlfriend Dana Barrett has had a son, Oscar...
- Question: How is Oscar related to Dana?
- Answering these questions from the source text (not summary) requires complex inferences and is extremely challenging; no progress on this dataset in 2 years

Story snippet:

DANA (setting the wheel brakes on the buggy)
Thank you, Frank. I'll get the hang of this eventually.

She continues digging in her purse while Frank leans over the buggy and makes funny faces at the baby, OSCAR, a very cute nine-month old boy.

FRANK (to the baby)
Hiya, Oscar. What do you say, slugger?

FRANK (to Dana)

That's a good-looking kid you got there, Ms. Barrett.

Kočiský et al. (2017)

Takeaways

- ▶ Lots of problems with current QA settings, lots of new datasets
- ▶ Models can often work well for one QA task but don't generalize
- We still don't have (solvable) QA settings which seem to require really complex reasoning as opposed to surface-level pattern recognition