CS388: Natural Language Processing

Lecture 5: CRFs

Greg Durrett

Administrivia

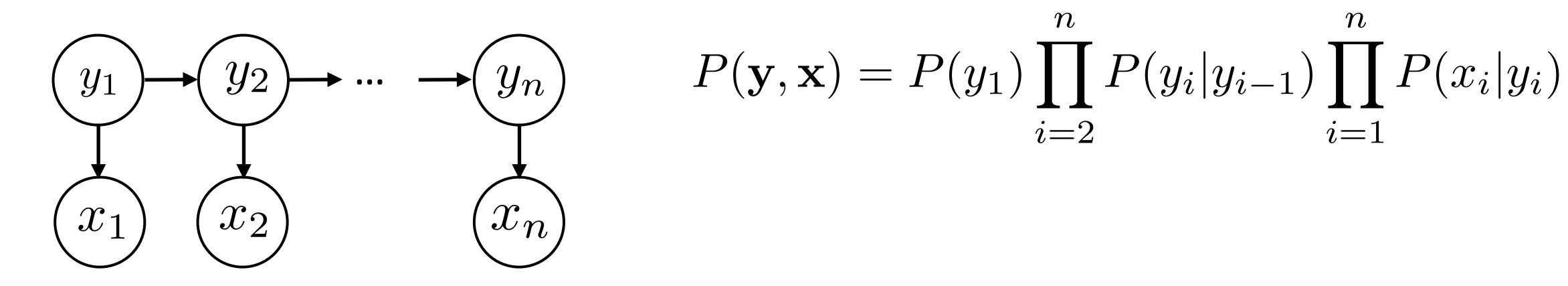
Mini 1 grading underway

Project 1 is out, sample writeups on website

Recall: HMMs

Observations O (= input x)

Output Q (sequence of states) = labels y



- Training: maximum likelihood estimation (with smoothing)
- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})}$
- ▶ Viterbi: $score_i(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_i|s) score_{i-1}(y_{i-1})$

Recall: Viterbi Algorithm

Initialization

$$v_1(j) = a_{0j}b_j(o_1) \quad 1 \le j \le N$$

Recursion

$$v_{t}(j) = \max_{i=1}^{N} v_{t-1}(i)a_{ij}b_{j}(o_{t}) \quad 1 \le j \le N, \quad 1 < t \le T$$

Termination

$$P^* = v_{T+1}(s_F) = \max_{i=1}^{N} v_T(i)a_{iF}$$

This only calculates the max. To get final answer (argmax),

- keep track of which state corresponds to the max at each step
- build the answer using these back pointers

slide credit: Ray Mooney

 a_0 : Initial state distribution

a_{ii}: Probability of *i-j* transition

 $b_i(o_t)$: Probability of emitting

symbol o_t from state j

Viterbi/HMMs: Other Resources

Lecture notes from my undergrad course (posted online)

▶ Eisenstein Chapter 7.3 **but** the notation covers a more general case than what's discussed for HMMs

Jurafsky+Martin 8.4.5

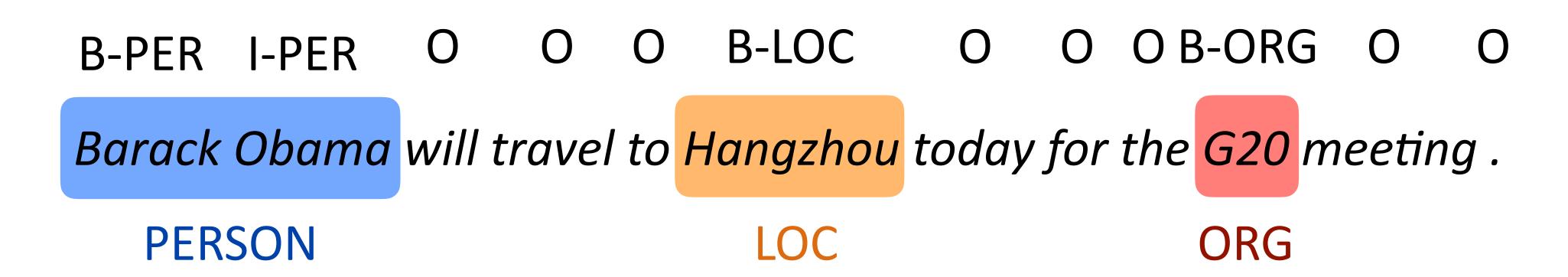
This Lecture

CRFs: model (+features for NER), inference, learning

Named entity recognition (NER)

(if time) Beam search

Named Entity Recognition



- ▶ BIO tagset: begin, inside, outside
- ▶ Sequence of tags should we use an HMM?
- Why might an HMM not do so well here?
 - Lots of O's
 - Insufficient features/capacity with multinomials (especially for unks)

CRFs

Where we're going

▶ Flexible discriminative model for tagging tasks that can use arbitrary features of the input. Similar to logistic regression, but *structured*

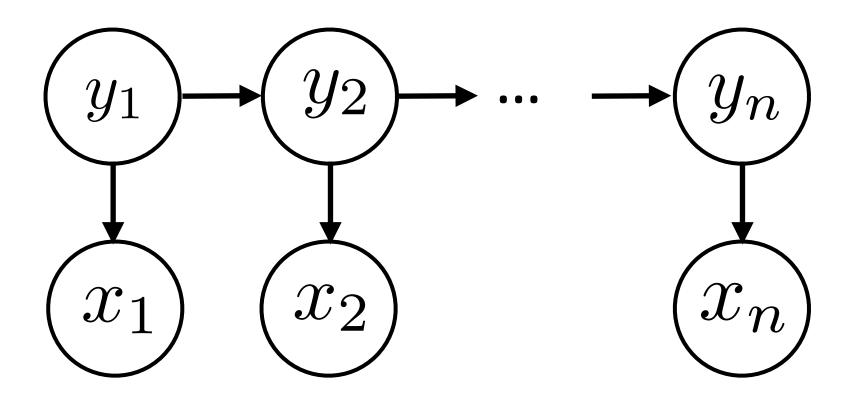
```
Barack Obama will travel to Hangzhou today for the G20 meeting.
Curr word=Barack & Label=B-PER
Next word=Obama & Label=B-PER
Curr_word_starts_with_capital=True & Label=B-PER
Posn_in_sentence=1st & Label=B-PER
Label=B-PER & Next-Label = I-PER
```

I-PER

B-PER

HMMs, Formally

HMMs are expressible as Bayes nets (factor graphs)



▶ This reflects the following decomposition:

$$P(\mathbf{y}, \mathbf{x}) = P(y_1)P(x_1|y_1)P(y_2|y_1)P(x_2|y_2)\dots$$

Locally normalized model: each factor is a probability distribution that normalizes

Conditional Random Fields

- HMMs: $P(\mathbf{y}, \mathbf{x}) = P(y_1)P(x_1|y_1)P(y_2|y_1)P(x_2|y_2)...$
- CRFs: discriminative models with the following globally-normalized form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_k \exp(\phi_k(\mathbf{x},\mathbf{y}))$$
 normalizer any real-valued scoring function of its arguments

• Special case: linear feature-based potentials $\phi_k(\mathbf{x},\mathbf{y}) = w^\top f_k(\mathbf{x},\mathbf{y})$

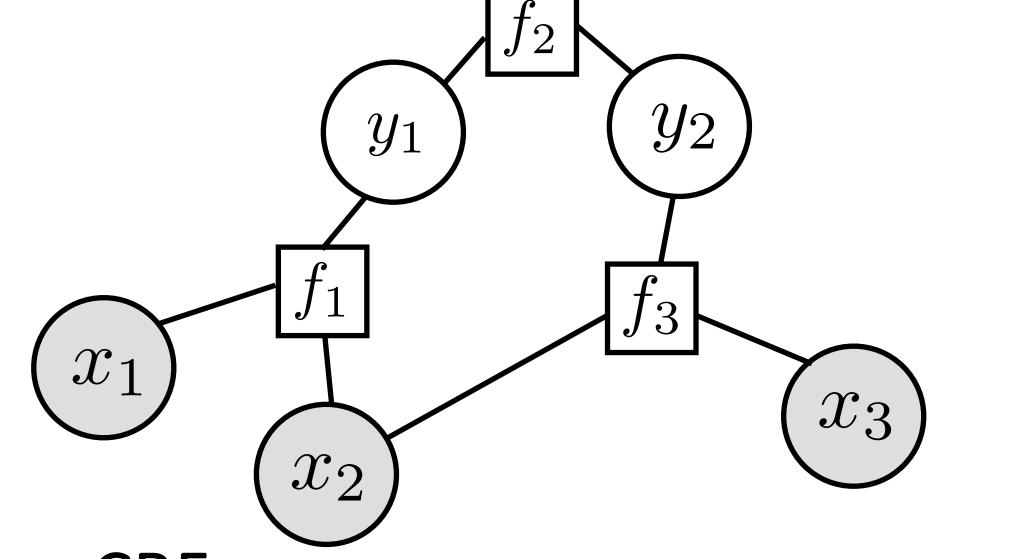
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y})\right)$$
 Looks like our single weight vector multiclass

logistic regression model

HMMs vs. CRFs

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y})\right)$$

Conditional model: x's are observed



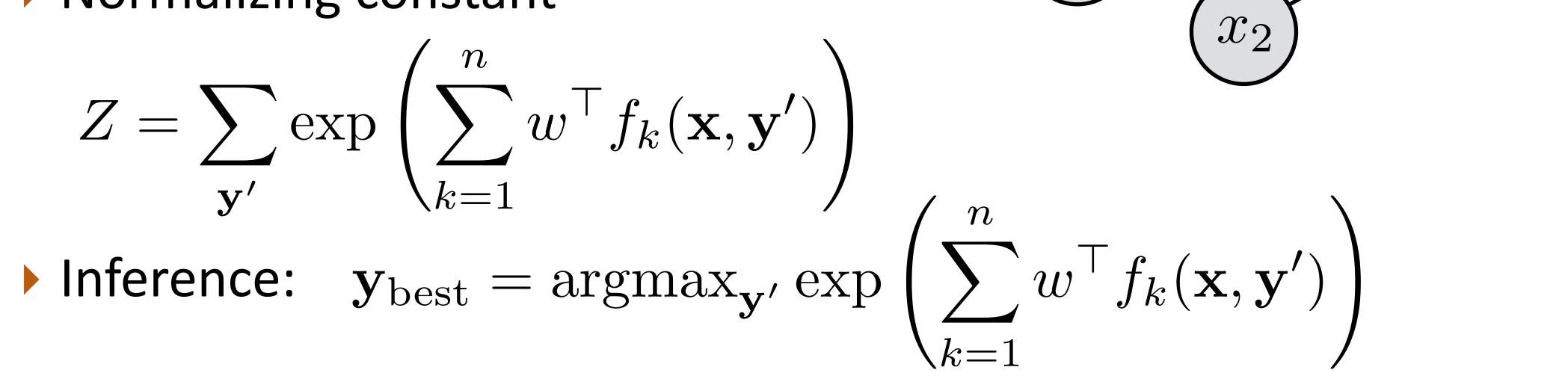
- Naive Bayes: logistic regression:: HMMs: CRFs local vs. global normalization <-> generative vs. discriminative (locally normalized discriminative models do exist (MEMMs))
- ▶ HMMs: in the standard setup, emissions consider one word at a time
- ► CRFs: features over many words simultaneously, non-independent features (e.g., suffixes and prefixes), doesn't have to be a generative model

Problem with CRFs

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y}) \right)$$

Normalizing constant

$$Z = \sum_{\mathbf{y}'} \exp\left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y}')\right)$$



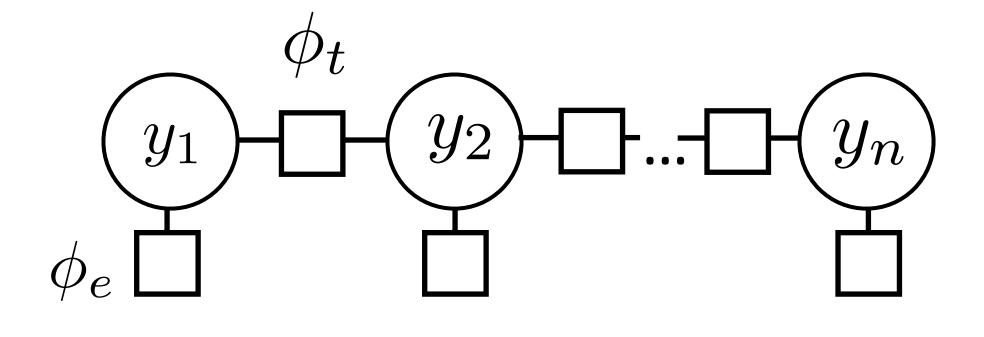
- If y consists of 5 variables with 30 values each, how expensive are these?
- Need to constrain the form of our CRFs to make it tractable

Sequential CRFs

Sequential CRF: (one form)

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

Notation: omit **x** from the factor graph entirely (implicit), but every feature function connects to it



Two types of factors: transitions ϕ_t (look at adjacent y's, but not x) and emissions ϕ_e (look at y and all of x)

Features for NER

Feature Functions

Phis are flexible (can be NN with 1B+ parameters). Here: sparse linear fcns (looks like Mini 1 features)

$$\phi_e(y_i, i, \mathbf{x}) = w^{\mathsf{T}} f_e(y_i, i, \mathbf{x}) \quad \phi_t(y_{i-1}, y_i) = w^{\mathsf{T}} f_t(y_{i-1}, y_i)$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

Basic Features for NER

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

O B-LOC

Barack Obama will travel to Hangzhou today for the G20 meeting.

Transitions: $f_t(y_{i-1}, y_i) = \text{Ind}[y_{i-1} \& y_i] = \text{Ind}[O - B-LOC]$

Emissions: $f_e(y_6, 6, \mathbf{x}) = \text{Ind[B-LOC & Current word = } Hangzhou]$ Ind[B-LOC & Prev word = to]

Emission Features for NER

LOC

 $\phi_e(y_i,i,\mathbf{x})$

Leicestershire is a nice place to visit...

PER

Leonardo DiCaprio won an award...

LOC

I took a vacation to Boston

ORG

Apple released a new version...

LOC

PER

Texas governor Greg Abbott said

According to the New York Times...

Emission Features for NER

- Word features (can use in HMM)
 - Capitalization
 - Word shape
 - Prefixes/suffixes
 - Lexical indicators
- Context features (can't use in HMM!)
 - Words before/after
 - Tags before/after
- Word clusters
- Gazetteers

Leicestershire

Boston

Apple released a new version...

According to the New York Times...

CRFs Outline

▶ Model:
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Inference
- Learning

Inference and Learning in CRFs

Computing (arg)maxes

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x})) \underbrace{\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}}_{\phi_e} \underbrace{\qquad \qquad \qquad \qquad }_{\phi_e} \underbrace{\qquad \qquad \qquad \qquad }_{\phi_e} \underbrace{\qquad \qquad }_{\phi_e} \underbrace{\qquad \qquad \qquad }_{\phi_e} \underbrace{\qquad \qquad \qquad }_{\phi_e} \underbrace{\qquad \qquad }_$$

ightharpoonup argmax $_{f y}P({f y}|{f x})$: can use Viterbi exactly as in HMM case

$$\max_{y_1,\dots,y_n} e^{\phi_t(y_{n-1},y_n)} e^{\phi_e(y_n,n,\mathbf{x})} \cdots e^{\phi_e(y_2,2,\mathbf{x})} e^{\phi_t(y_1,y_2)} e^{\phi_e(y_1,1,\mathbf{x})}$$

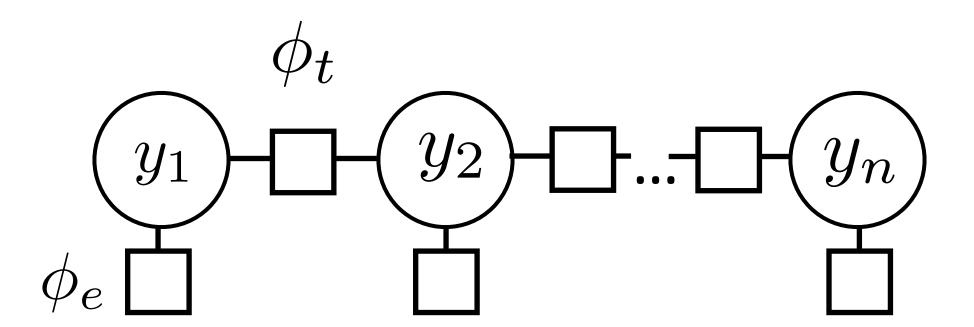
$$= \max_{y_2,\dots,y_n} e^{\phi_t(y_{n-1},y_n)} e^{\phi_e(y_n,n,\mathbf{x})} \cdots e^{\phi_e(y_2,2,\mathbf{x})} \max_{y_1} e^{\phi_t(y_1,y_2)} e^{\phi_e(y_1,1,\mathbf{x})}$$

$$= \max_{y_3,\dots,y_n} e^{\phi_t(y_{n-1},y_n)} e^{\phi_e(y_n,n,\mathbf{x})} \cdots \max_{y_2} e^{\phi_t(y_2,y_3)} e^{\phi_e(y_2,2,\mathbf{x})} \max_{y_1} e^{\phi_t(y_1,y_2)} \operatorname{score}_1(y_1)$$

 $\exp(\phi_t(y_{i-1},y_i))$ and $\exp(\phi_e(y_i,i,\mathbf{x}))$ play the role of the Ps now, same dynamic program

Inference in General CRFs

Can do efficient inference in any treestructured CRF



 Max-product algorithm: generalization of Viterbi to arbitrary treestructured graphs (sum-product is generalization of forward-backward)

CRFs Outline

▶ Model:
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Inference: argmax P(y | x) from Viterbi
- Learning

Training CRFs

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Logistic regression: $P(y|x) \propto \exp w^{\top} f(x,y)$
- Maximize $\mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \log P(\mathbf{y}^* | \mathbf{x})$
- Gradient is completely analogous to logistic regression:

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=2}^n f_t(y_{i-1}^*, y_i^*) + \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x})$$

$$\text{intractable!} \qquad \mathbf{\mathbb{E}}_{\mathbf{y}} \left[\sum_{i=2}^n f_t(y_{i-1}, y_i) + \sum_{i=1}^n f_e(y_i, i, \mathbf{x}) \right]$$

Training CRFs

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=2}^n f_t(y_{i-1}^*, y_i^*) + \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x})$$
$$-\mathbb{E}_{\mathbf{y}} \left[\sum_{i=2}^n f_t(y_{i-1}, y_i) + \sum_{i=1}^n f_e(y_i, i, \mathbf{x}) \right]$$

Let's focus on emission feature expectation

$$\mathbb{E}_{\mathbf{y}}\left[\sum_{i=1}^{n} f_e(y_i, i, \mathbf{x})\right] = \sum_{\mathbf{y} \in \mathcal{Y}} P(\mathbf{y} | \mathbf{x}) \left[\sum_{i=1}^{n} f_e(y_i, i, \mathbf{x})\right] = \sum_{i=1}^{n} \sum_{\mathbf{y} \in \mathcal{Y}} P(\mathbf{y} | \mathbf{x}) f_e(y_i, i, \mathbf{x})$$

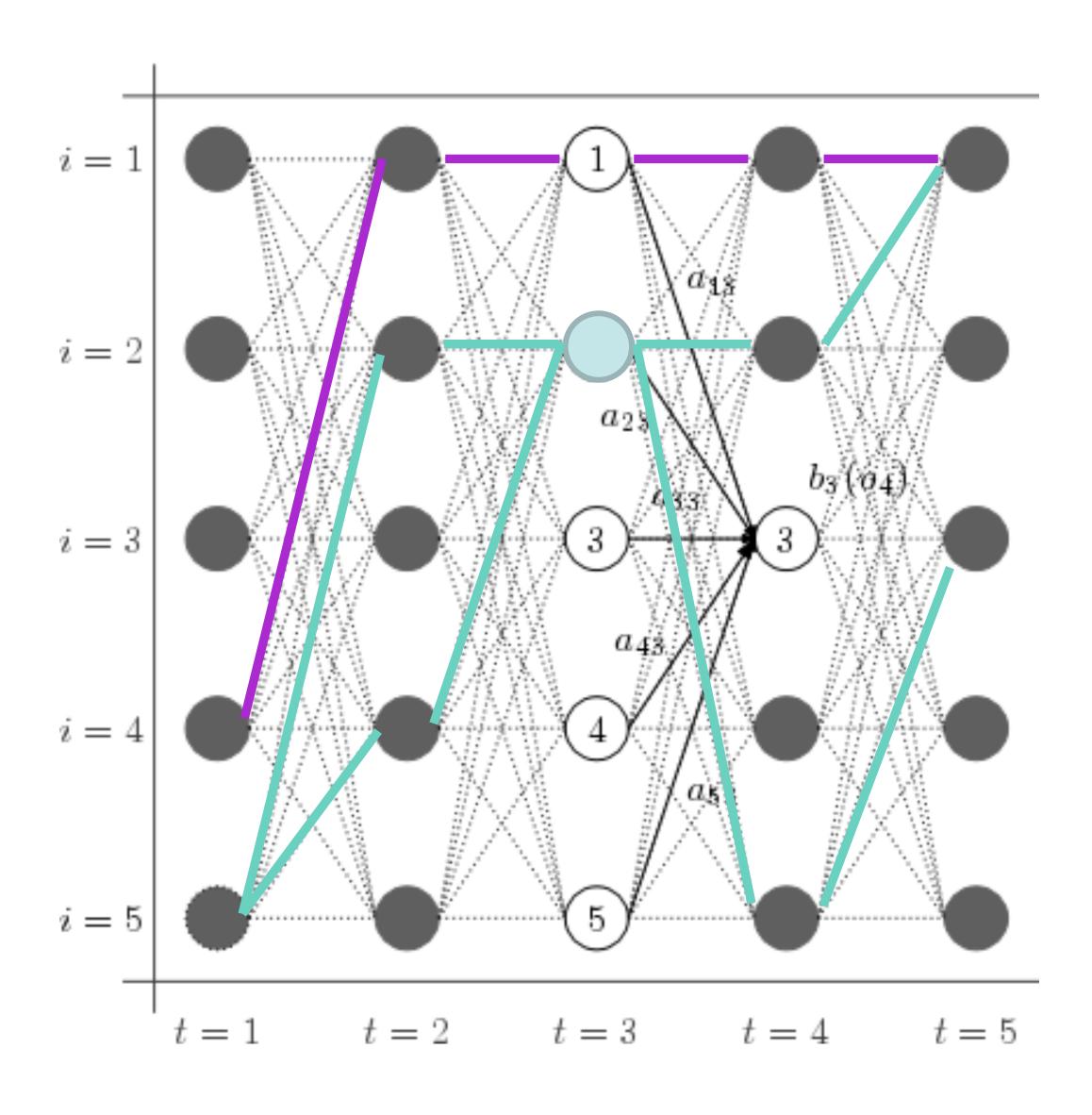
$$= \sum_{i=1}^{n} \sum_{s} P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$$

How do we compute these marginals $P(y_i = s | \mathbf{x})$?

$$P(y_i = s | \mathbf{x}) = \sum_{y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n} P(\mathbf{y} | \mathbf{x})$$

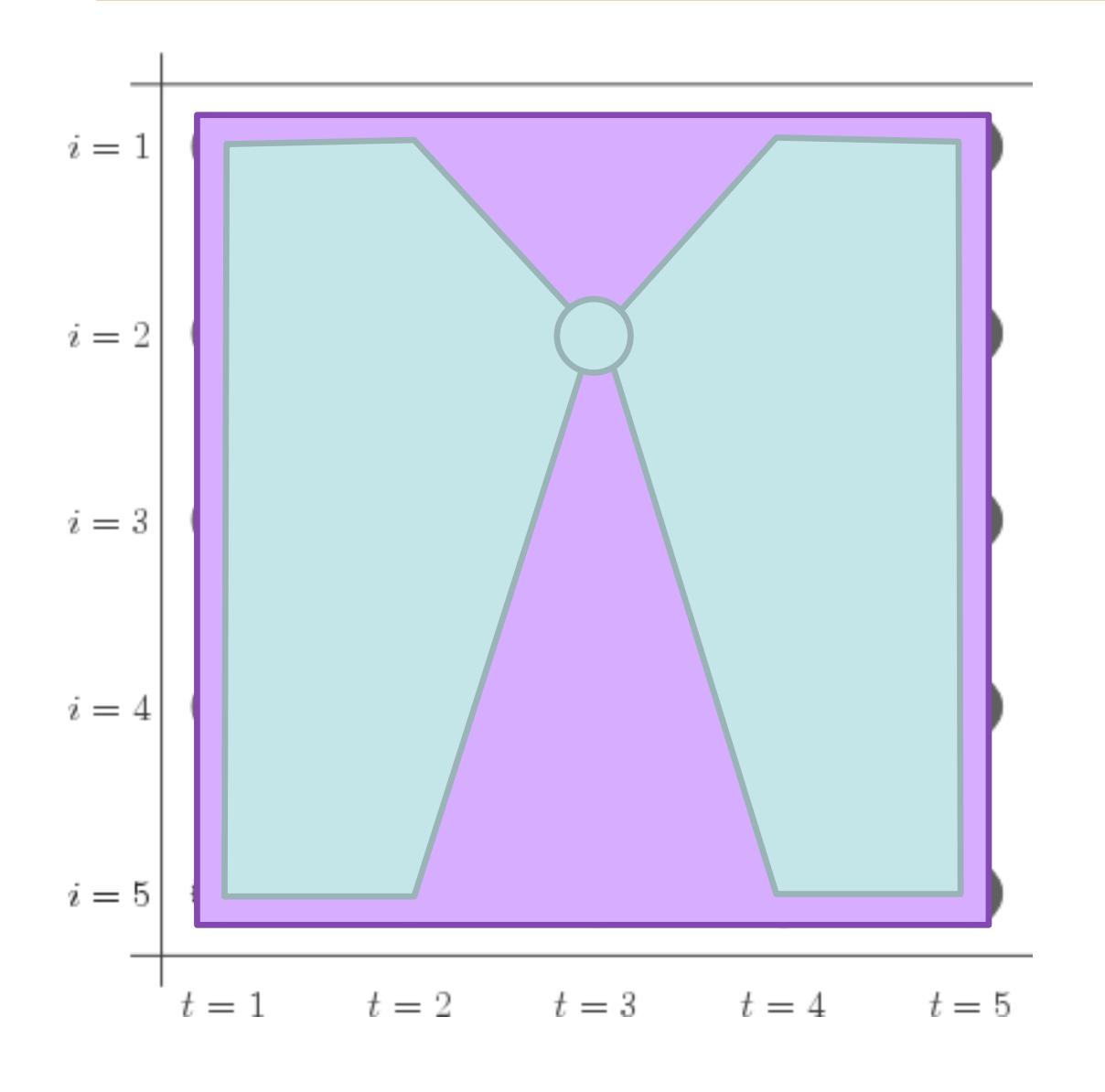
 $lackbox{What did Viter bi compute?} \ P(\mathbf{y}_{\max}|\mathbf{x}) = \max_{y_1,...,y_n} P(\mathbf{y}|\mathbf{x})$

Can compute marginals with dynamic programming as well using forward-backward



$$P(y_3 = 2|\mathbf{x}) =$$

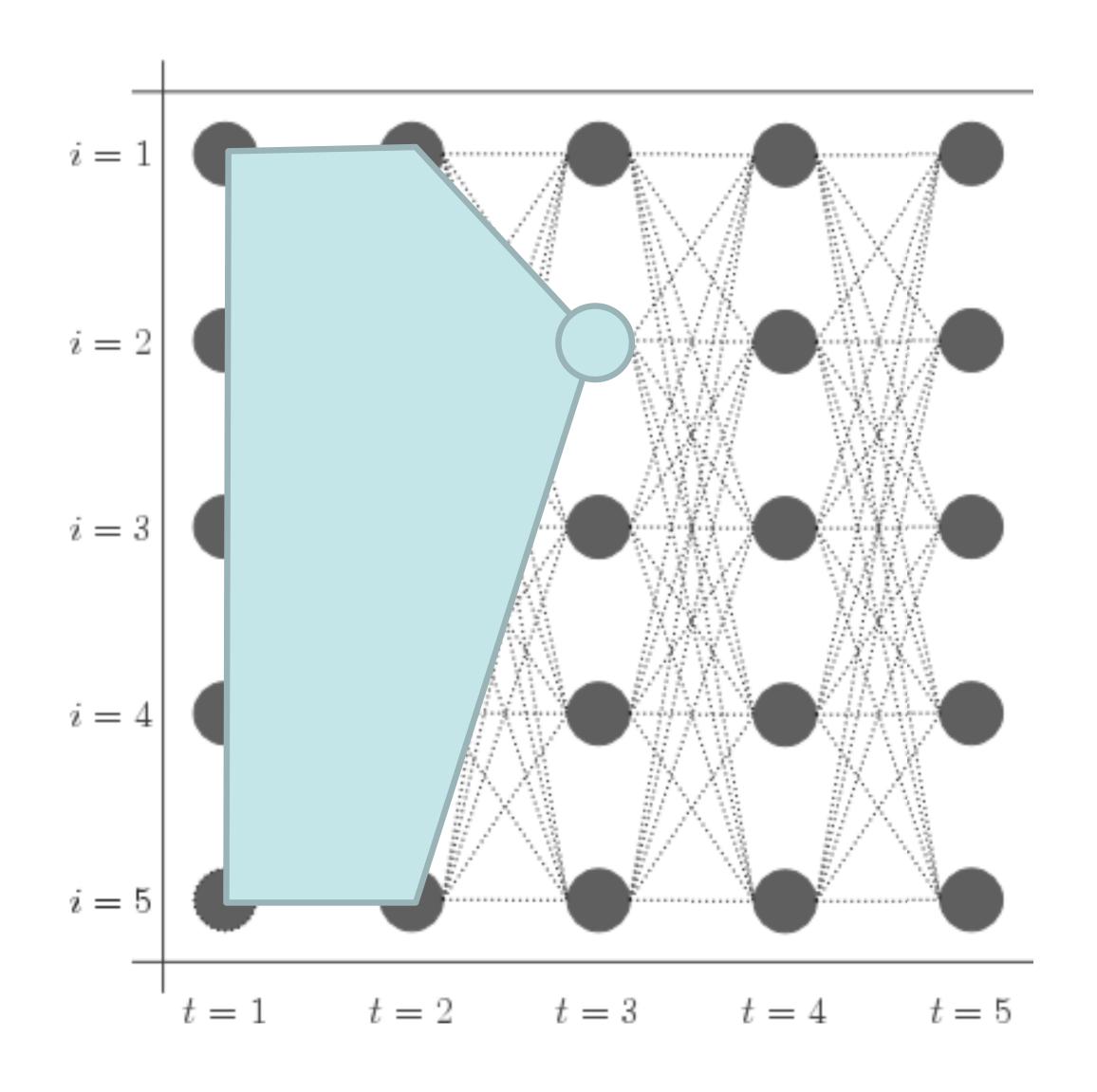
sum of all paths through state 2 at time 3 sum of all paths



$$P(y_3 = 2|\mathbf{x}) =$$

sum of all paths through state 2 at time 3 sum of all paths

Easiest and most flexible to do one pass to compute and one to compute



Initial:

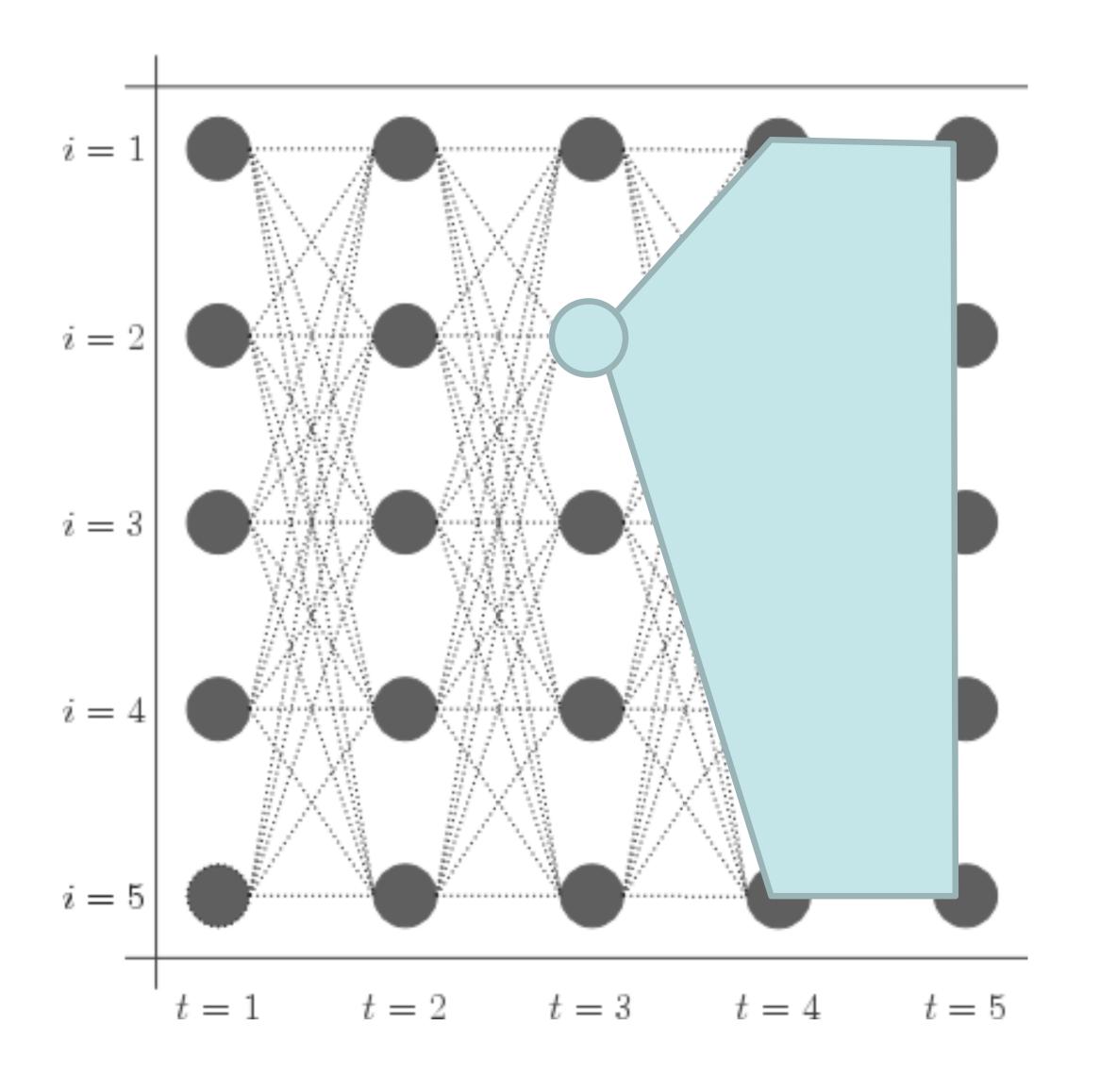
$$\alpha_1(s) = \exp(\phi_e(s, 1, \mathbf{x}))$$

Recurrence:

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \exp(\phi_e(s_t, t, \mathbf{x}))$$

$$\exp(\phi_t(s_{t-1}, s_t))$$

- Same as Viterbi but summing instead of maxing!
- These quantities get very small!
 Store everything as log probabilities



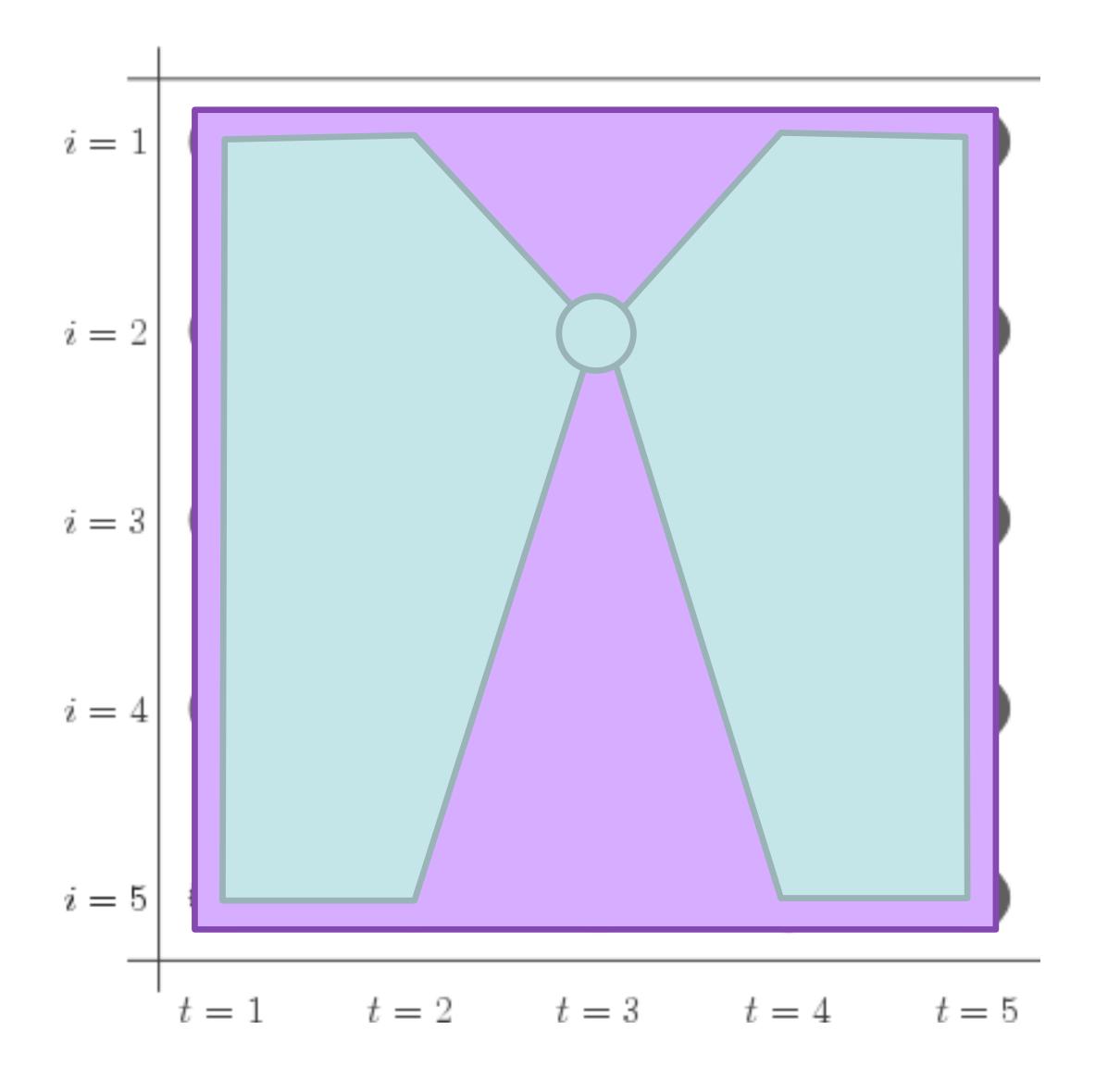
Initial:

$$\beta_n(s) = 1$$

Recurrence:

$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \exp(\phi_e(s_{t+1}, t+1, \mathbf{x}))$$
$$\exp(\phi_t(s_t, s_{t+1}))$$

Big differences: count emission for the *next* timestep (not current one)



$$\alpha_1(s) = \exp(\phi_e(s, 1, \mathbf{x}))$$

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \exp(\phi_e(s_t, t, \mathbf{x}))$$

$$\exp(\phi_t(s_{t-1}, s_t))$$

$$\beta_n(s) = 1$$

$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \exp(\phi_e(s_{t+1}, t+1, \mathbf{x}))$$
$$\exp(\phi_t(s_t, s_{t+1}))$$

$$P(s_3 = 2|\mathbf{x}) = \frac{\alpha_3(2)\beta_3(2)}{\sum_i \alpha_3(i)\beta_3(i)}$$

- Does this explain why beta is what it is?
- What is the denominator here? $P(\mathbf{x})$

Computing Marginals

- Normalizing constant $Z = \sum_{\mathbf{y}} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$
- Analogous to P(x) for HMMs
- For both HMMs and CRFs:

$$P(y_i = s | \mathbf{x}) = \frac{\text{forward}_i(s) \text{backward}_i(s)}{\sum_{s'} \text{forward}_i(s') \text{backward}_i(s')}$$

Z for CRFs, P(x) for HMMs

Posteriors vs. Probabilities

$$P(y_i = s | \mathbf{x}) = \frac{\text{forward}_i(s) \text{backward}_i(s)}{\sum_{s'} \text{forward}_i(s') \text{backward}_i(s')}$$

▶ Posterior is *derived* from the parameters and the data (conditioned on x!)

$$P(x_i|y_i), P(y_i|y_{i-1})$$

 $P(y_i|\mathbf{x}), P(y_{i-1}, y_i|\mathbf{x})$

HMM

Model parameter (usually multinomial distribution)

Inferred quantity from forward-backward

CRF

Undefined (model is by definition conditioned on **x**)

Inferred quantity from forward-backward

Training CRFs

For emission features:

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x}) - \sum_{i=1}^n \sum_s P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$$

gold features — expected features under model

- Transition features: need to compute $P(y_i=s_1,y_{i+1}=s_2|\mathbf{x})$ using forward-backward as well
- ...but you can build a pretty good system without learned transition features (use heuristic weights, or just enforce constraints like B-PER -> I-ORG is illegal)

CRFs Outline

▶ Model:
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Inference: argmax P(y|x) from Viterbi
- Learning: run forward-backward to compute posterior probabilities; then

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x}) - \sum_{i=1}^n \sum_s P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$$

Pseudocode

for each epoch

for each example

extract features on each emission and transition (look up in cache) compute potentials phi based on features + weights compute marginal probabilities with forward-backward accumulate gradient over all emissions and transitions

Implementation Tips for CRFs

- Caching is your friend! Cache feature vectors especially
- Try to reduce redundant computation, e.g. if you compute both the gradient and the objective value, don't rerun the dynamic program
- Exploit sparsity in feature vectors where possible, especially in feature vectors and gradients
- Do all dynamic program computation in log space to avoid underflow
- If things are too slow, run a profiler and see where time is being spent. Forward-backward should take most of the time

Debugging Tips for CRFs

- Hard to know whether inference, learning, or the model is broken!
- ▶ Compute the objective is optimization working?
 - Inference: check gradient computation (most likely place for bugs)
 - Is $\sum \text{forward}_i(s) \text{backward}_i(s)$ the same for all i?
 - Do probabilities normalize correctly + look "reasonable"? (Nearly uniform when untrained, then slowly converging to the right thing)
 - ▶ **Learning**: is the objective going down? Try to fit 1 example / 10 examples. Are you applying the gradient correctly?
- If objective is going down but model performance is bad:
 - ▶ Inference: check performance if you decode the training set