CS388: Natural Language Processing

Lecture 6: Neural
Networks

Greg Durrett

MY CPU IS A NEURALﬁWET PROCESSOR.
A LEARNING COMPUTER.

Administrivia

» Mini 1 graded later this week

» Project 1 due in a week

Recall: CRFs

T

Pyl = e [3w filxy)
k=1

» Conditional model: x’s are observed

» Naive Bayes : logistic regression :: HMMs : CRFs

local vs. global normalization <-> generative vs. discriminative
(locally normalized discriminative models do exist (MEMMs))

» HMMs: in the standard setup, emissions consider one word at a time

» CRFs: features over many words simultaneously, non-independent features
(e.g., suffixes and prefixes), doesn’t have to be a generative model

Recall: Sequential CRFs

» Model: P(y‘X) X eXp w th Yi—1,5Y; ‘|‘Zfe waaX

@ @ 1. » Emission features capture word-level
o [info, transitions enforce tag consistency

» Inference: argmax P(y|x) from Viterbi

» Learning: run forward-backward to compute posterior probabilities; then

6) mn
S Ly x) =) fe(ylix ZZP = 5[x) fe(s,,%)
1=1

This Lecture

» Finish discussion of NER

» Beam search: in a few lectures

» Neural network history

» Neural network basics

» Feedforward neural networks + backpropagation
» Applications

» Implementing neural networks (if time)

NER

NER

» CRF with lexical features can get around 85 F1 on this problem

» Other pieces of information that many systems capture

» World knowledge:

The delegation met the president at the airport, Tanjug said.

/

Tanjug (/tanjog/) (Serbian Cyrillic: TaHjyr) is a Serbian state news agency based in Belgrade.[z]

Tanjug

From Wikipedia, the free encyclopedia

Nonlocal Features

The news agency Tanjug reported on the outcome of the meeting.

ORG?
PER?

The delegation met the president at the airport, Tanjug said.

..
L}
~
o
L}
~
~
L}
y
L]
-
y
L |
-
L
L]
~
w
-
~
L}
-~
y
L]
o
L
-~
L
L
-~
o
~
~

» More complex factor graph structures can let you capture this, or just
decode sentences in order and use features on previous sentences

Finkel and Manning (2008), Ratinov and Roth (2009)

Semi-Markov Models

Barack Obama will travel to Hangzhou today for the G20 meeting .

-— T — I —
PER O LOC O ORG O

» Chunk-level prediction rather than token-level BIO

» y is a set of spans covering the sentence

» Pros: features can look at whole span at once

» Cons: there’s an extra factor of n in the dynamic programs

Sarawagi and Cohen (2004)

Evaluating NER

B-PER IIlPER O O O B-IOC O O OBORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON ORG

» Prediction of all Os still gets 66% accuracy on this example!

» What we really want to know: how many named entity chunk
predictions did we get right?

» Precision: of the ones we predicted, how many are right?
» Recall: of the gold named entities, how many did we find?

» F-measure: harmonic mean of these two

How well do NER systems do?

Lample et al. (2016)

System Resources Used Fq

LBJ-NER Wikipedia, Nonlocal Fea- | 90.80
tures, Word-class Model

(Suzuki and | Semi-supervised on 1G- | 89.92

Isozaki, 2008) word unlabeled data

(Ando and | Semi-supervised on 27M- | 89.31

Zhang, 2005) word unlabeled data

(Kazama and | Wikipedia 38.02

Torisawa, 2007a)

(Krishnan and | Non-local Features 87.24

Manning, 2006)

(Kazama and | Non-local Features 87.17

Torisawa, 2007b)

(Finkel et al., | Non-local Features 86.86

2005)

Ratinov and Roth (2009)

LSTM-CREF (no char)
LSTM-CRF

S-LSTM (no char)
S-LSTM

BILSTM-CRF + ELMo
Peters et al. (2018)

BERT
Devlin et al. (2019)

790.20

90.94
87.96
90.33

92.2

92.8

ur
.m,“.ull .

wpg 0 d&
I
‘building

’ izati
n%.”.m.&“.ml .
OL@snopaic jaallansssa o club ... alizal res /cou
0@ @ B ""'. P @) e iment_.
Ped0icas

‘*:o’.n%:.ﬂs..‘?«.ﬁ..m

o® ”m
it

a) Our Dataset b) OntoNotes ¢) FIGER

» More and more classes (17 ->112 -> 10,000+)

Choi et al. (2018)

Neural Net History

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5 X9

INPUT 6@28x28

32x32

S2: f. maps
6@14x 14

C5: layer
120 F6 layer OUTPUT

LN

FuII conAectlon ‘ GaUSS|an connections
Convolutions Subsampling Convolutlons Subsampllng Full connection

- I‘\

=

net. S, =s.tgy"

» LSTMs: Hochreiter and Schmidhuber (1997)

A\
e

» Henderson (2003): neural shift-reduce parser, not SOTA

»

V
| O
NN

2008-2013: A glimmer of light...

Input Window S———
Text cat sat on the mat

» Collobert and Weston 2011: “NLP (almost) from scratch” ™= ==~ =

K ,.K K
Feature K wy wy ... Wy

» Feedforward neural nets induce features for Lookup Dbl
sequential CRFs (“neural CRF”)

LTwx AN~

» 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

» Socher 2011-2014: tree-structured RNNs working okay

» Krizhevskey et al. (2012): AlexNet for vision

.. hot very good..
a b C

2014: Stuft starts working

» Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets)

» Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs)

» Chen and Manning transition-based dependency parser (based on
feedforward networks)

» 2015: explosion of neural nets for everything under the sun

» What made these work? Data (not as important as you might think),
optimization (initialization, adaptive optimizers), representation (good
word embeddings)

Neural Net Basics

Neural Networks

» Linear classification: argmax,w ' f(z,y)

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

l[contains not & contains good]

» How do we learn this if our feature vector is just the unigram indicators?

|[contains not], I[contains good]

Neural Networks: XOR

» Let’s see how we can use neural nets

to learn a simple nonlinear function L2
1 0
» Inputs 1, To
(generally x = (x1,...,Zm)) . .
XL
» Output ¥ 1
(generally Y = (ylv tee 7yn)) L1 Lo Y= XOR L9
0 O 0
0 1 1
1 0 1
1 1 0

Neural Networks: XOR

L2 Y = a1T1 + a2 X

y = a1x1 + a2 + ag tanh(x; + x2) &

1 1)

or

4 T (looks like action
B potential in neuron)

1 ! }

L1 L2 L1 XOR L9 /
0 0 0
0 1 1 2 p 1 ;
1 0 1 /
1 1 0

Neural Networks: XOR

L2 Y = a1x1 + a2 X

Yy = a1x1 + asxo + ag tanh(x; + o) V
y = —x1 — X2 + 2tanh(xq + x2)
zl A “Or”

0 0 0 L2
0 1 1
1 0 1
1 1 0

Neural Networks

Linear model: Yy = W - X + b

y=g(W-X+b>
WX—I—b

[N

Nonlinear Warp Shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

...possible because

Linear classifier Neural network we transformed the
N 7 \ \/ /’_:
L / | A / |
X // X //
NI N
\\ // \\ /
T T

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

y = 9(Wz +b)

z=g(Vy +¢)

z=¢9g(Vg(Wx +b) + c)
—

output of first layer

Check: what happens if no nonlinearity?
More powerful than basic linear models?

z=V(Wx+b)+c

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropagation

Logistic Regression with NNs

—l_ ° oo
P(y|x) = exp(w_ f(%,y)) » Single scalar probability

Zy’ exp(wa(X, y/))
" Compute scores for all possible

P(y|x) = softmax ([w' f(x,y)],ey) labels at once (returns vector)

softmax(p); = exp(pi) » softmax: exps and normalizes a
D i €xXp(pir) given vector

P(y|x) = softmax(W f(x)) » Weight vector per class;
W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))
num classes
d hidden units probs

H
g

d X n matrix nonlinearity = num classes x d
n features (tanh, relu, ...) matrix

Training Neural Networks

P(y|x) = softmax(Wz) z =g(V f(x))

» Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - e;+)
» i*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,17)=Wz-ep — logZexp(Wz) - €

J

Computing Gradients

L(x,2")=Wz-ex — 10gZexp(Wz) - €

J
» Gradient with respect to W
o z; — Py =1|x)z; ifj=i*
L(x,1") = : :
OWi; —P(y =1i|x)z; otherwise

» Looks like logistic regression with z as the features!

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

.
g
Z 8W

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

5 Activations at

hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1") Oz
8‘/7;3' B 8Z 6"/;
w‘e math...]

err(root) = e;+ — P(y|x) 0L(x, 1"
dim=m

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

err(z)

» Can forget everything after z, treat \
it as the output and keep backpropping

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

III

» Easy to update parameters based on “error signal” from next layer,

keep pushing error signal back as backpropagation

» Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs f(x)

Fed raises interest rates in order to .. previous word

» Word embeddings for each word form input

(sasipJ)quia

» ~1000 features here — smaller feature vector ~ curr word
than in sparse models, but every feature fires on

every example
next word

(D
3
=2
S.
~
Q)
-
M
n
=
D
3
2
-
Q
~
M
2

» Weight matrix learns position-dependent

processing of the words other words, feats, etc. L=
Botha et al. (2017)

COe00 Py

(OOO0O0O0O0O0O000OQ) hi

R E . Ao -

® D
! |

7|
— | [S—
eu) -

EbI:l

igrams

at E trigrams

no queue at

NLP with Feedforward Networks

» Hidden layer mixes these
different signals and learns
feature conjunctions

Botha et al. (2017)

» Multilingual tagging results:

NLP with Feedforward Networks

Model Acc. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k - 6.63m
Small FF 94716 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.31m
2 Dim. 95.39 143k 0.7 0.18m

» Gillick used LSTMs; this is smaller, faster, and better

Botha et al. (2017)

Sentiment Analysis

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax
ho = f(Ws - hy + bo)
hl — f(Wl - QU + bl)
4
av =) Z
| | || HEEEEN
Predator masterpiece

c1 C2 c3 C4 lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
fine bin (S)
DAN-ROOT — 469 85.7 — 31
DAN-RAND 773 454 83.2 88.8 136
DAN 80.3 4777 863 894 136 | lyyer et al. (2015)
NBOW-RAND 76.2 423 814 88.9 91
NBOW 79.0 436 83.6 89.0 91
Bag-of-words BiNB — 419 81 — — \Wangand
NBSVM-bi 794 — — 912 — Moo (5019
RecNN™ 777 432 824 — — anning ()
RecNTN™ — 457 854 — —
DRecNN — 498 86.6 — 431
Tree RNNs / TreeLSTM — 50.6 86.9 — —
CNNS / LSTMS DCNN* 485 869 894 @ —
PVEC* 487 878 926 — |
CNN-MC CNN-MC 811 474 881 — 2452] Kim (2014)
WRRBM™ — 89 2 —

Implementation Details

Computation Graphs

» Computing gradients is hard! Computation graph abstraction allows us to
define a computation symbolically and will do this for us

» Automatic differentiation: keep track of derivatives / be able to
backpropagate through each function:

y =X *x =P (y,dy) = (X * X, 2 * X * dx)
codegen

» Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

» Define forward pass for P(y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
def 1nit (self, 1inp, hid, out):
super (FFNN, self). 1nit ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self.W = nn.Linear (hid, out)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

Computation Graphs in Pytorch

el*: one-hot vector

P(y|X) — SOftmaX(Wg(Vf(X))) of the label
(e.g., [0, 1, O07)
ffnn = FFNN() ,//
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

loss.backward()

optimizer.step()

Training a Model

Define a computation graph
For each epoch:
For each batch of data:
Compute loss on batch

Autograd to compute gradients

Take step with optimizer

Decode test set

Next Time

» Training neural networks

» Word representations / word vectors

» word2vec, GloVe

