
CS388:	Natural	Language	Processing

Greg	Durrett

Lecture	6:	Neural	
Networks

Administrivia

‣ Mini	1	graded	later	this	week

‣ Project	1	due	in	a	week

Recall:	CRFs

‣ Naive	Bayes	:	logisGc	regression	::	HMMs	:	CRFs 
local	vs.	global	normalizaGon	<->	generaGve	vs.	discriminaGve

(locally	normalized	discriminaGve	models	do	exist	(MEMMs))

P (y|x) = 1

Z
exp

nX

k=1

w>fk(x,y)

!
y1 y2

x1

x2
x3

f1

f2

f3

‣ HMMs:	in	the	standard	setup,	emissions	consider	one	word	at	a	Gme

‣ CRFs:	features	over	many	words	simultaneously,	non-independent	features	
(e.g.,	suffixes	and	prefixes),	doesn’t	have	to	be	a	generaGve	model

‣ CondiGonal	model:	x’s	are	observed

Recall:	SequenGal	CRFs

‣ Model:

‣ Inference:	argmax	P(y|x)	from	Viterbi

‣ Learning:	run	forward-backward	to	compute	posterior	probabiliGes;	then

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#

@

@w
L(y⇤,x) =

nX

i=1

fe(y
⇤
i , i,x)�

nX

i=1

X

s

P (yi = s|x)fe(s, i,x)

y1 y2 yn…
�t

�e

‣ Emission	features	capture	word-level	
info,	transiGons	enforce	tag	consistency

This	Lecture

‣ Feedforward	neural	networks	+	backpropagaGon

‣ Neural	network	basics

‣ ApplicaGons

‣ Neural	network	history

‣ Beam	search:	in	a	few	lectures

‣ ImplemenGng	neural	networks	(if	Gme)

‣ Finish	discussion	of	NER

NER

NER

‣ CRF	with	lexical	features	can	get	around	85	F1	on	this	problem

‣Other	pieces	of	informaGon	that	many	systems	capture

‣World	knowledge:

The	delegaGon	met	the	president	at	the	airport,	Tanjug	said.

ORG?
PER?

Nonlocal	Features

The	delegaGon	met	the	president	at	the	airport,	Tanjug	said.

The	news	agency	Tanjug	reported	on	the	outcome	of	the	meeGng.

‣More	complex	factor	graph	structures	can	let	you	capture	this,	or	just	
decode	sentences	in	order	and	use	features	on	previous	sentences

Finkel	and	Manning	(2008),	RaGnov	and	Roth	(2009)

Semi-Markov	Models

Barack	Obama	will	travel	to	Hangzhou	today	for	the	G20	mee=ng	.

‣ Chunk-level	predicGon	rather	than	token-level	BIO

‣ y	is	a	set	of	spans	covering	the	sentence

‣ Cons:	there’s	an	extra	factor	of	n	in	the	dynamic	programs

{ { { { { {

PER O LOC ORG OO

‣ Pros:	features	can	look	at	whole	span	at	once

Sarawagi	and	Cohen	(2004)

EvaluaGng	NER

‣ PredicGon	of	all	Os	sGll	gets	66%	accuracy	on	this	example!

Barack	Obama	will	travel	to	Hangzhou	today	for	the	G20	mee=ng	.

PERSON LOC ORG

B-PER I-PER O O O B-LOC B-ORGO O O O O

‣ What	we	really	want	to	know:	how	many	named	enGty	chunk	
predicGons	did	we	get	right?
‣ Precision:	of	the	ones	we	predicted,	how	many	are	right?

‣ Recall:	of	the	gold	named	enGGes,	how	many	did	we	find?

‣ F-measure:	harmonic	mean	of	these	two

How	well	do	NER	systems	do?

RaGnov	and	Roth	(2009)

Lample	et	al.	(2016)

BiLSTM-CRF	+	ELMo  
Peters	et	al.	(2018)

92.2

BERT  
Devlin	et	al.	(2019)

92.8

Modern	EnGty	Typing

Choi	et	al.	(2018)

‣ More	and	more	classes	(17	->	112	->	10,000+)

Neural	Net	History

History:	NN	“dark	ages”
‣ Convnets:	applied	to	MNIST	by	LeCun	in	1998

‣ LSTMs:	Hochreiter	and	Schmidhuber	(1997)

‣ Henderson	(2003):	neural	shin-reduce	parser,	not	SOTA

2008-2013:	A	glimmer	of	light…

‣ Collobert	and	Weston	2011:	“NLP	(almost)	from	scratch”
‣ Feedforward	neural	nets	induce	features	for	
sequenGal	CRFs	(“neural	CRF”)

‣ 2008	version	was	marred	by	bad	experiments,	
claimed	SOTA	but	wasn’t,	2011	version	Ged	SOTA

‣ Socher	2011-2014:	tree-structured	RNNs	working	okay

‣ Krizhevskey	et	al.	(2012):	AlexNet	for	vision

2014:	Stuff	starts	working

‣ Sutskever	et	al.	+	Bahdanau	et	al.:	seq2seq	for	neural	MT	(LSTMs)

‣ Kim	(2014)	+	Kalchbrenner	et	al.	(2014):	sentence	classificaGon	/	senGment	
(convnets)

‣ 2015:	explosion	of	neural	nets	for	everything	under	the	sun

‣ Chen	and	Manning	transiGon-based	dependency	parser	(based	on	
feedforward	networks)

‣ What	made	these	work?	Data	(not	as	important	as	you	might	think),	
op-miza-on	(iniGalizaGon,	adapGve	opGmizers),	representa-on	(good	
word	embeddings)

Neural	Net	Basics

Neural	Networks

‣ Want	to	learn	intermediate	conjuncGve	features	of	the	input

argmaxyw
>
f(x, y)‣ Linear	classificaGon:

the	movie	was	not	all	that	good

I[contains	not	&	contains	good]

‣ How	do	we	learn	this	if	our	feature	vector	is	just	the	unigram	indicators?

I[contains	not],	I[contains	good]

Neural	Networks:	XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn))
y = x1 XOR x2

‣ Let’s	see	how	we	can	use	neural	nets 
to	learn	a	simple	nonlinear	funcGon

‣ Inputs

‣ Output

Neural	Networks:	XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural	Networks:	XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural	Networks

Taken	from	hvp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)

y = g(Wx+ b)

Neural	Networks

Taken	from	hvp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
…possible	because	
we	transformed	the	
space!

Deep	Neural	Networks

Taken	from	hvp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

}

output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

z = V(Wx+ b) + c

Check:	what	happens	if	no	nonlinearity?	
More	powerful	than	basic	linear	models?

Feedforward	Networks,	
BackpropagaGon

LogisGc	Regression	with	NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single	scalar	probability

P (y|x) = softmax

�
[w>f(x, y)]y2Y

� ‣ Compute	scores	for	all	possible 
labels	at	once	(returns	vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ sonmax:	exps	and	normalizes	a	
given	vector

P (y|x) = softmax(Wf(x)) ‣Weight	vector	per	class; 
W	is	[num	classes	x	num	feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now	one	hidden	layer

Neural	Networks	for	ClassificaGon

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

sonmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	

probs

Training	Neural	Networks

‣Maximize	log	likelihood	of	training	data

‣ i*:	index	of	the	gold	label

‣ ei:	1	in	the	ith	row,	zero	elsewhere.	Dot	by	this	=	select	ith	index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

CompuGng	Gradients

‣ Gradient	with	respect	to	W

if	i	=	i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks	like	logisGc	regression	with	z	as	the	features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

W

Neural	Networks	for	ClassificaGon

V sonmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

CompuGng	Gradients:	BackpropagaGon
z = g(V f(x))

AcGvaGons	at	
hidden	layer

‣ Gradient	with	respect	to	V:	apply	the	chain	rule

err(root) = ei⇤ � P (y|x)
dim	=	m dim	=	d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

[some	math…]

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

BackpropagaGon:	Picture

V sonmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can	forget	everything	aner	z,	treat 
it	as	the	output	and	keep	backpropping

BackpropagaGon:	Takeaways

‣ Gradients	of	output	weights	W	are	easy	to	compute	—	looks	like	
logisGc	regression	with	hidden	layer	z	as	feature	vector

‣ Can	compute	derivaGve	of	loss	with	respect	to	z	to	form	an	“error	
signal”	for	backpropagaGon

‣ Easy	to	update	parameters	based	on	“error	signal”	from	next	layer,	
keep	pushing	error	signal	back	as	backpropagaGon

‣ Need	to	remember	the	values	from	the	forward	computaGon

ApplicaGons

NLP	with	Feedforward	Networks

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em

b(raises)
‣Word	embeddings	for	each	word	form	input

‣ ~1000	features	here	—	smaller	feature	vector	
than	in	sparse	models,	but	every	feature	fires	on	
every	example

em
b(interest)

em
b(rates)‣Weight	matrix	learns	posiGon-dependent	

processing	of	the	words

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs

NLP	with	Feedforward	Networks

‣ Hidden	layer	mixes	these	
different	signals	and	learns	
feature	conjuncGons

Botha	et	al.	(2017)

NLP	with	Feedforward	Networks
‣MulGlingual	tagging	results:

Botha	et	al.	(2017)

‣ Gillick	used	LSTMs;	this	is	smaller,	faster,	and	bever

SenGment	Analysis
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)

SenGment	Analysis

{

{
Bag-of-words

Tree	RNNs	/	
CNNS	/	LSTMS

Wang	and	
Manning	(2012)

Kim	(2014)

Iyyer	et	al.	(2015)

ImplementaGon	Details

ComputaGon	Graphs

‣ CompuGng	gradients	is	hard!	ComputaGon	graph	abstracGon	allows	us	to	
define	a	computaGon	symbolically	and	will	do	this	for	us

‣ AutomaGc	differenGaGon:	keep	track	of	derivaGves	/	be	able	to	
backpropagate	through	each	funcGon:

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Use	a	library	like	Pytorch	or	Tensorflow.	This	class:	Pytorch

ComputaGon	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

‣ Define	forward	pass	for

ComputaGon	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):
ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Training	a	Model
Define	a	computaGon	graph

For	each	epoch:

Compute	loss	on	batch

For	each	batch	of	data:

Decode	test	set

Autograd	to	compute	gradients

Take	step	with	opGmizer

Next	Time

‣Word	representaGons	/	word	vectors

‣word2vec,	GloVe

‣ Training	neural	networks

