CS388: Natural Language Processing

Lecture 7: Word

= 2 /
Embeddings 1 v/»‘

Greg Durrett
TEXA

The University of Texas at Austin

Administrivia

» Mini 1 grades out tonight or tomorrow

» Project 1 due Tuesday

Clarification: Forward-Backward

» Forward-backward slides showed forward-backward in the HMM case
(emission scores were probabilities P(xi|yi))

» For CRFs: use transition/emission potentials (computed from features +
weights) instead of probabilities

» Lecture 5 notes updated with F-B on CRFs

Recall: Feedforward NNs

P(y|x) = softmax(Wg(V f(x)))

num_classes
d hidden units

probs
= "
B v HHen W :
g
dxnmatrix nonlinearity num_classes x d
n features

(tanh, relu, ...) matrix

Recall: Backpropagation

P(y|x) = softmax(Wg(V f(x)))

d hidden units

oL

oW
Oz err

—

[
w:
A

err(root)

This Lecture
» Training tips
» Word representations

» word2vec/GloVe

» Evaluating word embeddings

Training Tips

Batching
» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch_size, num_feats]
gold label is [batch_size, num_classes]
def make update(input, gold label)

probs = ffnn.forward(input) # [batch_size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

Training Basics How does initialization affect learning?

» Basic formula: compute gradients on batch, use first-order optimization P(y\x) = SoftmaX(Wg(Vf(X)))
method (SGD, Adagrad, etc.)

d hidden units
» How to initialize? How to regularize? What optimizer to use?

» This lecture: some practical tricks. Take deep learning or optimization \:i/ Vv _|:|_. — W >
courses to understand this further g A

dxnmatrix nonlinearity m x d matrix
n features (tanh, relu, ...)

» How do we initialize V and W? What consequences does this have?
» Nonconvex problem, so initialization matters!

How does initialization affect learning? Initialization
» Nonlinear model...how does this affect things? 1) Can’t use zeroes for parameters to produce hidden layers: all values in
1 that hidden layer are always 0 and have gradients of 0, never change

2) Initialize too large and cells are saturated

- : + » Can do random uniform / normal initialization with appropriate scale
......... » Glorot initializer: U —\/ . 6 ,+\/ - 6
) fan-in + fan-out fan-in + fan-out
» If cell activations are too large in absolute value, gradients are small > Want variance of inputs and gradients for each layer to be the same
» ReLU: larger dynamic range (all positive numbers), but can produce » Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale

big values, can break down if everything is too negative each layer to have mean 0 and variance 1 over a batch (useful if net is deep

Dropout

» Probabilistically zero out parts of the network during training to prevent

overfitting, use whole network at test time

» Form of stochastic
regularization

» Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it

has redundan cy (a) Standard Neural Net (b) After applying dropout.

» One line in Pytorch/Tensorflow Srivastava et al. (2014)

Optimizer

» Adam (Kingma and Ba, ICLR 2015): [|
very widely used. Adaptive step size
+momentum

_ IMDB BoW feature Logistic Regression

050,

— Adagrad+dropout
RMSProp+dropout
SGDNesterov+dropout
Adam-+dropout

» Wilson et al. NIPS 2017: adaptive
methods can actually perform o
badly at test time (Adam is in i
pink, SGD in black) £s0

Adam (Default): 5.47+0.02

/Adam: 5.35:0.01

RMSProp: 5.2840.00

HB: 5.13:0.01

Development Perplexity

AdaGrad: 534+0.02 BT
80 100 70 @0 60 80

» One more trick: gradient clipping * S
. Epoch Epoch
(set @ max value for your gradients)) e s s (0 Gt s (ks

20 T00

Word Representations

Word Representations

» Neural networks work very well at continuous data, but words are discrete
» Continuous model <-> expects continuous semantics from input

» “You shall know a word by the company it keeps” Firth (1957)

d@residend @ that the downturn was over
president | the __ of \ N
- - J president
president |the __ said governor
governor |the __ of

governor |the __ appointed

said sources __ ¢ Sa{ijd
said president __ that reporte

reported | sources _ ¢

[Finch and Chater 92, Shuetze 93, many others] slide credit: Dan Klein

Discrete Word Representations

» Brown clusters: hierarchical agglomerative hard clustering (each word has
one cluster, not some posterior distribution like in mixture models)

go great enjoyable

cat fish
dog good

» Maximize P(w;|w;—1) = P(ci|ci—1)P(w;|c;)

» Useful features for tasks like NER, not suitable for NNs Brown et al. (1992

Word Embeddings

» Part-of-speech tagging with FFNNs (@)
??

E|
Fedraises interest rates:in order to ... previous word (| 3
» Word embeddings for each word form input 3
currword || §
» What properties should these vectors have? g
i
next word| 3

other words, feats, etc. L.

Botha et al. (2017)

Word Embeddings

» Want a vector space where similar words have similar embeddings

the movie was great
great
® good
the movie was good enjoyable
dog

» Goal: come up with a way to
produce these embeddings

» For each word, want \
“medium” dimensional vector bad

(50-300 dims) representing it

word2vec/GloVe

Continuous Bag-of-Words

» Predict word from context) :
theidog|bit theiman

— d-dimensional
dog word embeddings 7

L] gold label = bit,

Multiply I no manual labeling
o

required!
sized size |V]| xd

the

L P(w|w_1,w4+1) = softmax (W (c(w-1) + c(w+1)))

» Parameters: d x |V| (one d-length context vector per voc word),

|V| x d output parameters (W) Mikolov et al. (2013

Skip-Gram

» Predict one word of context from word

M
gold = dog

Multiply

s

P(w'|w) = softmax(We(w))

bit
» Another training example: bit -> the

» Parameters: d x |V| vectors, |V| x d output parameters (W) (also

usable as vectors!) Mikolov et al. (2013

Hierarchical Softmax
P(w|w_1,wy1) = softmax (W(c(w-1) + c(wy1))) P(w'|w) = softmax(We(w))

» Matmul + softmax over |V| is very slow to compute for CBOW and SG

- H -

the
a

» Huffman encode
vocabulary, use binary
classifiers to decide
which branch to take

» log(|V|) binary decisions

» Standard softmax:
[|V] xdl xd

» Hierarchical softmax:
log(|V|) dot products of size d,

|V| x d parameters Mikolov et al. (2013

Skip-Gram with Negative Sampling

» Take (word, context) pairs and classify them as “real” or not. Create
random negative examples by sampling from unigram distribution
(bit, the) =>+1
(bit, cat) => -1
(bit, a) =>-1
(bit, fish) =>-1

w-e
€ '\

P(y = lw,c) = e

words in similar
contexts select for

similar c vectors

» d x |V] vectors, d x |V| context vectors (same # of params as before)
1 sampled
» Objective = log P(y = 1|w, c¢) + z Zlog P(y = 0Jw;, ¢)
i=1
Mikolov et al. (2013)

Connections with Matrix Factorization

» Skip-gram model looks at word-word co-occurrences and produces two
types of vectors

V| d V|

context vecs | d

word pair word
VI — |V|
counts vecs

» Looks almost like a matrix factorization...can we interpret it this way?

Levy et al. (2014)

Skip-Gram as Matrix Factorization

VI num negative samples
i S > Mij = PMI(U}@, Cj) —logk
P(w;, ;) count(wi,c;)
PMI(w;, ;) = e LA D
00 5) = Pl Pley) ~ ot it

Skip-gram objective exactly corresponds to factoring this matrix:
» If we sample negative examples from the uniform distribution over words

» ...and it’s a weighted factorization problem (weighted by word freq)

Levy et al. (2014)

GloVe (Global Vectors)

VI
» Also operates on counts matrix, weighted
regression on the log co-occurrence matrix V| word pair
counts

2

» Objective = Z f(count(w;, ¢;)) (w;rcj + a; + b; — log count(w;, ¢;)))
,J

» Constant in the dataset size (just need counts), quadratic in voc size

» By far the most common word vectors used today (5000+ citations)

Pennington et al. (2014)

fastText: Sub-word Embeddings

» Same as SGNS, but break words down into n-grams withn=3to 6

where:

3-grams: <wh, whe, her, ere, re>
4-grams: <whe, wher, here, ere>,
5-grams: <wher, where, here>,
6-grams: <where, where>

» Replace W - ¢ in skip-gram computation with < Z Wy - c)

gEngrams

» Advantages?

Bojanowski et al. (2017)

Using Word Embeddings Preview: Context-dependent Embeddings

i ?
» Approach 1: learn embeddings as parameters from your data » How to handle different word senses? One vector for balls

| | [] [| | I I] |
» Often works pretty well f f |__I_| Ij f f l__l_|

» Approach 2: initialize using GloVe, keep fixed]
» Faster because no need to update these parameters I;w—‘l:‘:w—‘[‘:w—‘[;l‘ I;w—'l:‘:w—'l:‘:w—'l:‘]‘

» Approach 3: initialize using GloVe, fine-tune they dance at balls they hit the balls

» Works best for some tasks » Train a neural language model to predict the next word given previous
words in the sentence, use its internal representations as word vectors

» Context-sensitive word embeddings: depend on rest of the sentence

» Huge improvements across nearly all NLP tasks over GloVe
Peters et al. (2018)

Compositional Semantics

» What if we want embedding representations for whole sentences?

» Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level (more later) .

Evaluation

» Is there a way we can compose vectors to make sentence
representations? Summing?

» Will return to this in a few weeks as we move on to syntax and
semantics

Evaluating Word Embeddings

» What properties of language should word embeddings capture?

» Similarity: similar words are close to
each other

cat

» Analogy:
good is to best as smart is to ??? dog

Paris is to France as Tokyo is to ???

great

good
enjoyable

Similarity

Method WordSim WordSim Brunietal. Radinsky etal. Luongetal. Hilletal.
Similarity ~Relatedness MEN M. Turk Rare Words ~ SimLex
PPMI 755 697 745 .686 462 393
SVD 793 .691 778 .666 514 432
SGNS 793 .685 774 693 470 438
GloVe 725 .604 729 632 403 398

tiger

» SVD = singular value decomposition on PMI matrix

» GloVe does not appear to be the best when experiments are carefully
controlled, but it depends on hyperparameters + these distinctions don’t
matter in practice

wolf bad was 1S Levy et al. (2015)
Analogies What can go wrong with word embeddings?
(king - man) + woman = queen » What’s wrong with learning a word’s “meaning” from its usage?

king + (woman - man) = queen

» Why would this be?

» woman - man captures the difference in
the contexts that these occur in

king

» Dominant change: more “he” with man
and “she” with woman — similar to
difference between king and queen

» Can evaluate on this as well

X woman

» What data are we learning from?

» What are we going to learn from this data?

What do we mean by bias?

Extreme she occupations
1. homemaker 2. nurse 3. receptionist

» Identify she - he axis in
4. librarian 5. socialite 6. hairdresser
word vector space, 7. nanny 8. bookkeeper 9. stylist
.) 10. housekeeper 11. interior designer 12. guidance counselor
project words onto this

axis

Extreme he occupations

1. maestro 2. skipper 3. protege

4. philosopher 5. captain 6. architect

7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Bolukbasi et al. (2016)

Racial A

black — homeless caucasian — servicemen
» N earest n elgh bo r of (b - caucasian — hillbilly asian — suburban

asian — laborer black — landowner
a+ c) i Religious Analf)g‘es
jew — greedy muslim — powerless
christian — familial muslim — warzone
muslim — d d christian — intell Ily

Manzini et al. (2019)

Debiasing

» Identify gender subspace with gendered
words

» Project words onto this subspace homemiaker

she

» Subtract those projections from “*e homemaker’

the original word

woman

he
man

Bolukbasi et al. (2016)

Hardness of Debiasing

. - .. HM%Kipper
» Not that effective...and the male o] Original e v
and female words are still “ ‘ -
clustered together °- n,;gg%mgef{;
- Ppfarare e,
» Bias pervades the word embedding ,
. Debiased . . _ harrikipper]
space and isn’t just a local property ’
of a few words B

(a) The plots for HARD-DEBIASED embedding, before
(top) and after (bottom) debiasing.

Gonen and Goldberg (2019)

Takeaways

» Lots to tune with neural networks
» Training: optimizer, initializer, regularization (dropout), ...
» Hyperparameters: dimensionality of word embeddings, layers, ...

» Word vectors: learning word -> context mappings has given way to
matrix factorization approaches (constant in dataset size)

» Lots of pretrained embeddings work well in practice, they capture some
desirable properties

» Even better: context-sensitive word embeddings (ELMo)

» Next time: RNNs and CNNs

