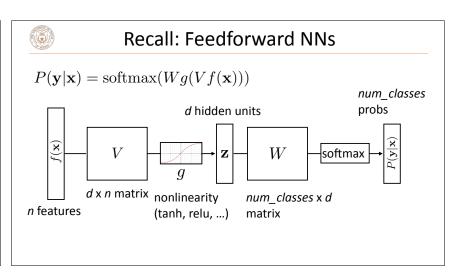
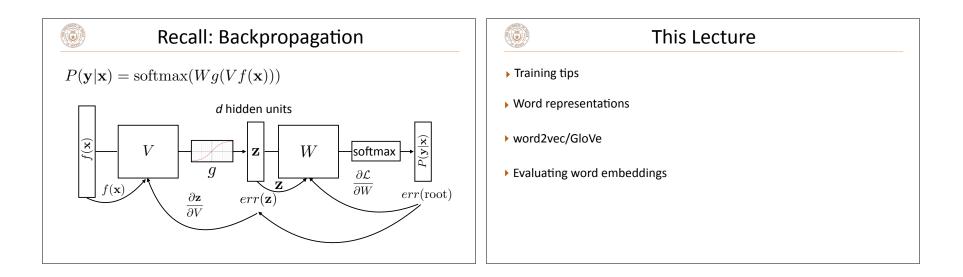
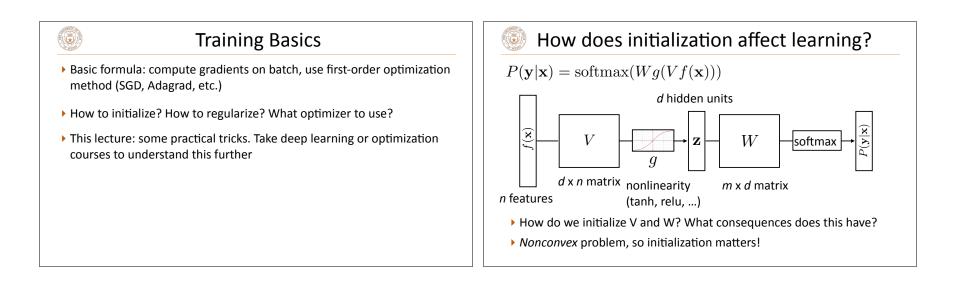
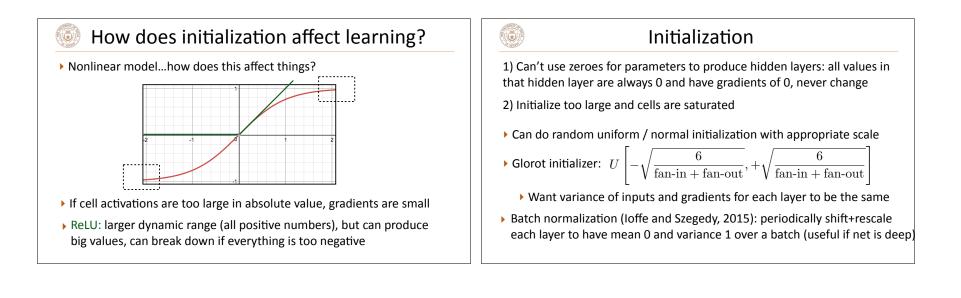


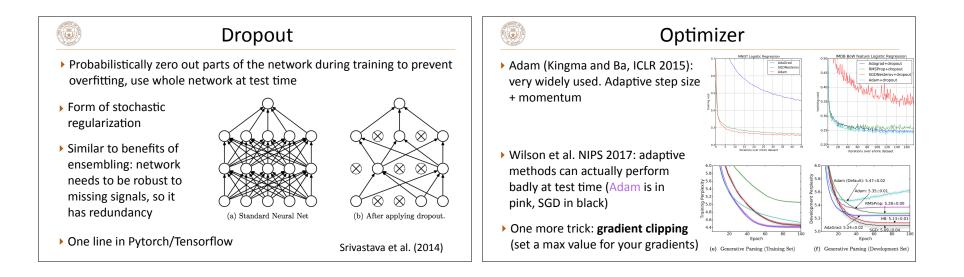
- Forward-backward slides showed forward-backward in the HMM case (emission scores were probabilities P(x_i | y_i))
- For CRFs: use transition/emission potentials (computed from features + weights) instead of probabilities
- Lecture 5 notes updated with F-B on CRFs

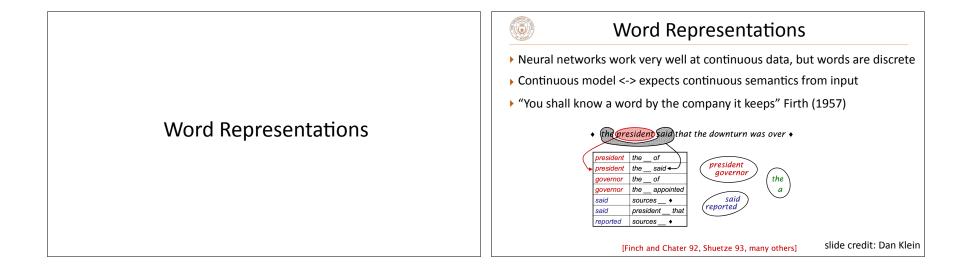




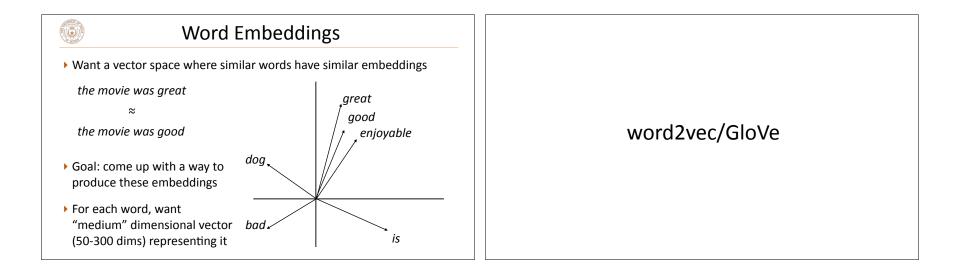


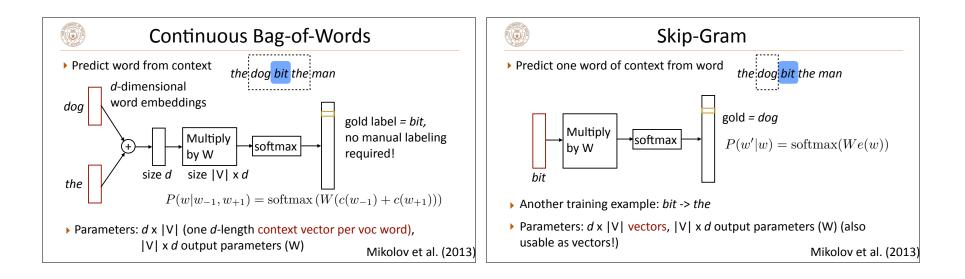


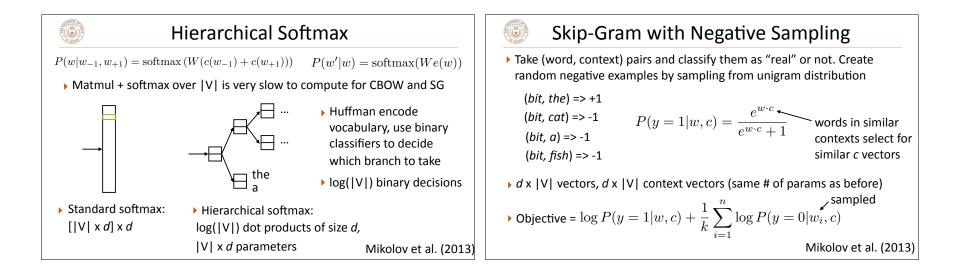


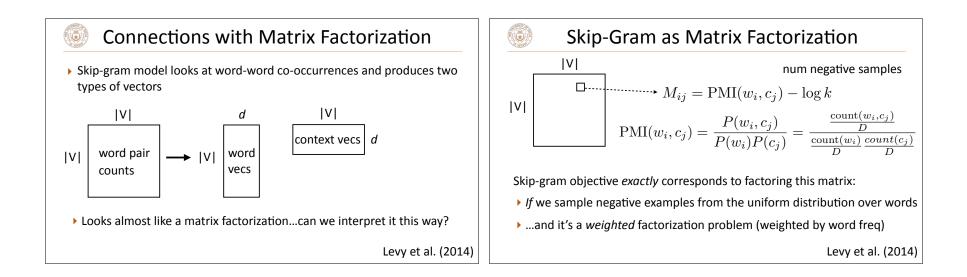


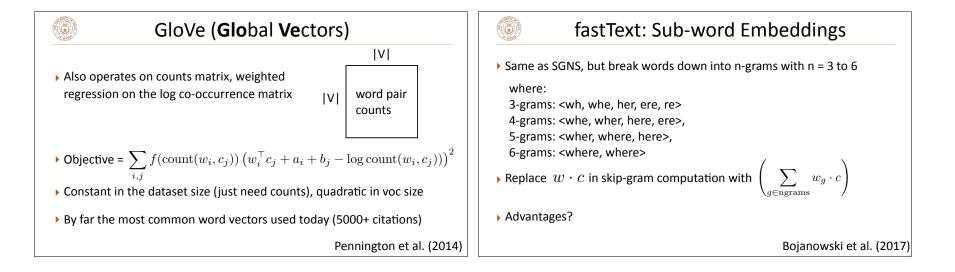


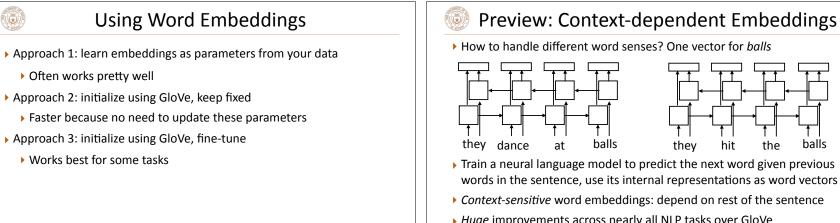


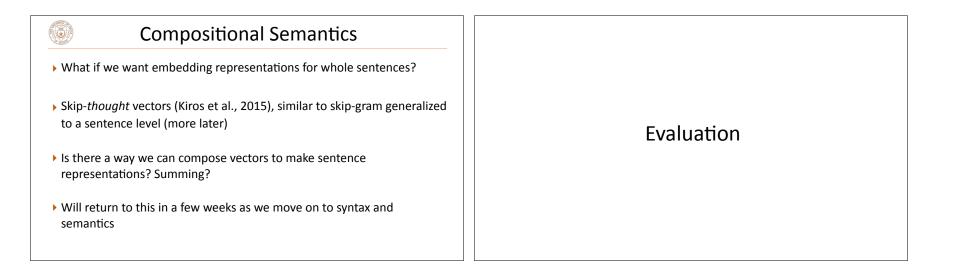


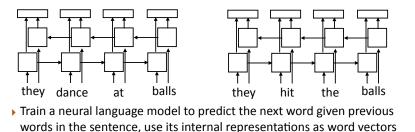






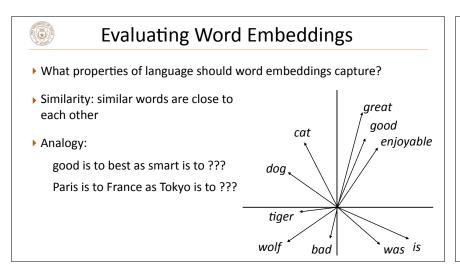






- Context-sensitive word embeddings: depend on rest of the sentence
- Huge improvements across nearly all NLP tasks over GloVe

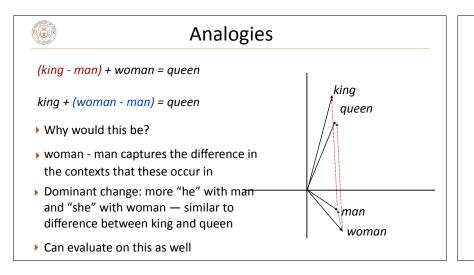
Peters et al. (2018)



<u>9</u>	Similarity					
Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.
	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex
PPMI	.755	.697	.745	.686	.462	.393
SVD	.793	.691	.778	.666	.514	.432
SGNS	.793	.685	.774	.693	.470	.438
GloVe	.725	.604	.729	.632	.403	.398

 GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't matter in practice

Levy et al. (2015)



What can go wrong with word embeddings?

- What's wrong with learning a word's "meaning" from its usage?
- What data are we learning from?
- What are we going to learn from this data?

