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Lecture	7:	Word	
Embeddings
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Administrivia

‣Mini	1	grades	out	tonight	or	tomorrow

‣ Project	1	due	Tuesday

ClarificaIon:	Forward-Backward

‣ Lecture	5	notes	updated	with	F-B	on	CRFs

‣ Forward-backward	slides	showed	forward-backward	in	the	HMM	case	
(emission	scores	were	probabiliIes	P(xi|yi))

‣ For	CRFs:	use	transiIon/emission	potenIals	(computed	from	features	+	
weights)	instead	of	probabiliIes

Recall:	Feedforward	NNs
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Recall:	BackpropagaIon
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This	Lecture

‣Word	representaIons

‣ word2vec/GloVe

‣ EvaluaIng	word	embeddings

‣ Training	Ips

Training	Tips

Batching

‣ Batching	data	gives	speedups	due	to	more	efficient	matrix	operaIons

‣ Need	to	make	the	computaIon	graph	process	a	batch	at	the	same	Ime

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch	sizes	from	1-100	oWen	work	well

def make_update(input, gold_label)

# input is [batch_size, num_feats]  
# gold_label is [batch_size, num_classes]

...



Training	Basics
‣ Basic	formula:	compute	gradients	on	batch,	use	first-order	opImizaIon	
method	(SGD,	Adagrad,	etc.)

‣ How	to	iniIalize?	How	to	regularize?	What	opImizer	to	use?

‣ This	lecture:	some	pracIcal	tricks.	Take	deep	learning	or	opImizaIon	
courses	to	understand	this	further

How	does	iniIalizaIon	affect	learning?
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‣ How	do	we	iniIalize	V	and	W?	What	consequences	does	this	have?

‣ Nonconvex	problem,	so	iniIalizaIon	ma8ers!

‣ Nonlinear	model…how	does	this	affect	things?

‣ If	cell	acIvaIons	are	too	large	in	absolute	value,	gradients	are	small

‣ ReLU:	larger	dynamic	range	(all	posiIve	numbers),	but	can	produce	
big	values,	can	break	down	if	everything	is	too	negaIve

How	does	iniIalizaIon	affect	learning? IniIalizaIon
1)	Can’t	use	zeroes	for	parameters	to	produce	hidden	layers:	all	values	in	
that	hidden	layer	are	always	0	and	have	gradients	of	0,	never	change

‣ Can	do	random	uniform	/	normal	iniIalizaIon	with	appropriate	scale
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‣ Glorot	iniIalizer:

‣Want	variance	of	inputs	and	gradients	for	each	layer	to	be	the	same

‣ Batch	normalizaIon	(Ioffe	and	Szegedy,	2015):	periodically	shiW+rescale	
each	layer	to	have	mean	0	and	variance	1	over	a	batch	(useful	if	net	is	deep)

2)	IniIalize	too	large	and	cells	are	saturated



Dropout
‣ ProbabilisIcally	zero	out	parts	of	the	network	during	training	to	prevent	
overfiing,	use	whole	network	at	test	Ime

Srivastava	et	al.	(2014)

‣ Similar	to	benefits	of	
ensembling:	network	
needs	to	be	robust	to	
missing	signals,	so	it	
has	redundancy

‣ Form	of	stochasIc	
regularizaIon	

‣ One	line	in	Pytorch/Tensorflow

OpImizer
‣ Adam	(Kingma	and	Ba,	ICLR	2015):	
very	widely	used.	AdapIve	step	size	
+	momentum

‣Wilson	et	al.	NIPS	2017:	adapIve	
methods	can	actually	perform	
badly	at	test	Ime	(Adam	is	in	
pink,	SGD	in	black)

‣ One	more	trick:	gradient	clipping	
(set	a	max	value	for	your	gradients)

Word	RepresentaIons

Word	RepresentaIons

‣ ConInuous	model	<->	expects	conInuous	semanIcs	from	input

‣ “You	shall	know	a	word	by	the	company	it	keeps”	Firth	(1957)

‣ Neural	networks	work	very	well	at	conInuous	data,	but	words	are	discrete

slide	credit:	Dan	Klein



Discrete	Word	RepresentaIons

good

enjoyablegreat
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fishcat

‣ Brown	clusters:	hierarchical	agglomeraIve	hard	clustering	(each	word	has	
one	cluster,	not	some	posterior	distribuIon	like	in	mixture	models)

‣Maximize

‣ Useful	features	for	tasks	like	NER,	not	suitable	for	NNs
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Brown	et	al.	(1992)

Word	Embeddings

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…
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‣Word	embeddings	for	each	word	form	input em
b(interest)

em
b(rates)

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs

‣What	properIes	should	these	vectors	have?

good
enjoyable

bad

dog

great

is

‣Want	a	vector	space	where	similar	words	have	similar	embeddings

the	movie	was	great

the	movie	was	good

~~

Word	Embeddings

‣ Goal:	come	up	with	a	way	to	
produce	these	embeddings

‣ For	each	word,	want	
“medium”	dimensional	vector	
(50-300	dims)	represenIng	it

word2vec/GloVe



ConInuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

‣ Parameters:	d	x	|V|	(one	d-length	context	vector	per	voc	word), 
																						|V|	x	d	output	parameters	(W)

dog

the

+

size	d

soWmax
MulIply 
by	W

gold	label	=	bit, 
no	manual	labeling 
required!

Mikolov	et	al.	(2013)

d-dimensional  
word	embeddings

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

size	|V|	x	d

Skip-Gram

the	dog	bit	the	man
‣ Predict	one	word	of	context	from	word

bit

soWmax
MulIply 
by	W

gold	=	dog

‣ Parameters:	d	x	|V|	vectors,	|V|	x	d	output	parameters	(W)	(also	
usable	as	vectors!)

‣ Another	training	example:	bit	->	the

P (w0|w) = softmax(We(w))

Mikolov	et	al.	(2013)

Hierarchical	SoWmax

‣Matmul	+	soWmax	over	|V|	is	very	slow	to	compute	for	CBOW	and	SG

‣ Hierarchical	soWmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard	soWmax:	
[|V|	x	d]	x	d log(|V|)	dot	products	of	size	d,

…

…

the
a

‣ Huffman	encode	
vocabulary,	use	binary 
classifiers	to	decide	
which	branch	to	take

|V|	x	d	parameters Mikolov	et	al.	(2013)

P (w0|w) = softmax(We(w))

‣ log(|V|)	binary	decisions

Skip-Gram	with	NegaIve	Sampling

‣ d	x	|V|	vectors,	d	x	|V|	context	vectors	(same	#	of	params	as	before)

Mikolov	et	al.	(2013)

(bit,	the)	=>	+1
(bit,	cat)	=>	-1

(bit,	a)	=>	-1
(bit,	fish)	=>	-1

‣ Take	(word,	context)	pairs	and	classify	them	as	“real”	or	not.	Create	
random	negaIve	examples	by	sampling	from	unigram	distribuIon

words	in	similar	
contexts	select	for	
similar	c	vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ ObjecIve	=	
sampled

logP (y = 1|w, c) + 1

k

nX

i=1

logP (y = 0|wi, c)
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ConnecIons	with	Matrix	FactorizaIon

Levy	et	al.	(2014)

‣ Skip-gram	model	looks	at	word-word	co-occurrences	and	produces	two	
types	of	vectors

word	pair 
counts

|V|

|V| |V|

d

d

|V|

context	vecs
word  
vecs

‣ Looks	almost	like	a	matrix	factorizaIon…can	we	interpret	it	this	way?

Skip-Gram	as	Matrix	FactorizaIon

Levy	et	al.	(2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

‣ If	we	sample	negaIve	examples	from	the	uniform	distribuIon	over	words

num	negaIve	samples

‣ …and	it’s	a	weighted	factorizaIon	problem	(weighted	by	word	freq)

Skip-gram	objecIve	exactly	corresponds	to	factoring	this	matrix:

GloVe	(Global	Vectors)

Pennington	et	al.	(2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ ObjecIve	=	

‣ Also	operates	on	counts	matrix,	weighted  
regression	on	the	log	co-occurrence	matrix

‣ Constant	in	the	dataset	size	(just	need	counts),	quadraIc	in	voc	size

‣ By	far	the	most	common	word	vectors	used	today	(5000+	citaIons)

word	pair 
counts

|V|

|V|

fastText:	Sub-word	Embeddings

‣ Same	as	SGNS,	but	break	words	down	into	n-grams	with	n	=	3	to	6

Bojanowski	et	al.	(2017)

where: 
3-grams:	<wh,	whe,	her,	ere,	re> 
4-grams:	<whe,	wher,	here,	ere>, 
5-grams:	<wher,	where,	here>, 
6-grams:	<where,	where>

‣ Replace														in	skip-gram	computaIon	with		w · c
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‣ Advantages?



Using	Word	Embeddings

‣ Approach	1:	learn	embeddings	as	parameters	from	your	data

‣ Approach	2:	iniIalize	using	GloVe,	keep	fixed

‣ Approach	3:	iniIalize	using	GloVe,	fine-tune
‣ Faster	because	no	need	to	update	these	parameters

‣Works	best	for	some	tasks

‣ OWen	works	pre8y	well

Preview:	Context-dependent	Embeddings

Peters	et	al.	(2018)

‣ Train	a	neural	language	model	to	predict	the	next	word	given	previous	
words	in	the	sentence,	use	its	internal	representaIons	as	word	vectors

‣ Context-sensiCve	word	embeddings:	depend	on	rest	of	the	sentence

‣ Huge	improvements	across	nearly	all	NLP	tasks	over	GloVe

they hit the ballsthey dance at balls

‣ How	to	handle	different	word	senses?	One	vector	for	balls

ComposiIonal	SemanIcs

‣What	if	we	want	embedding	representaIons	for	whole	sentences?

‣ Skip-thought	vectors	(Kiros	et	al.,	2015),	similar	to	skip-gram	generalized	
to	a	sentence	level	(more	later)

‣ Is	there	a	way	we	can	compose	vectors	to	make	sentence	
representaIons?	Summing?

‣Will	return	to	this	in	a	few	weeks	as	we	move	on	to	syntax	and	
semanIcs

EvaluaIon



EvaluaIng	Word	Embeddings

‣What	properIes	of	language	should	word	embeddings	capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was

‣ Similarity:	similar	words	are	close	to	
each	other

‣ Analogy:

Paris	is	to	France	as	Tokyo	is	to	???

good	is	to	best	as	smart	is	to	???

Similarity

Levy	et	al.	(2015)

‣ SVD	=	singular	value	decomposiIon	on	PMI	matrix

‣ GloVe	does	not	appear	to	be	the	best	when	experiments	are	carefully	
controlled,	but	it	depends	on	hyperparameters	+	these	disIncIons	don’t	
ma8er	in	pracIce

Analogies

queen
king

woman

man

(king	-	man)	+	woman	=	queen

‣Why	would	this	be?

‣ woman	-	man	captures	the	difference	in 
the	contexts	that	these	occur	in

king	+	(woman	-	man)	=	queen

‣ Dominant	change:	more	“he”	with	man	
and	“she”	with	woman	—	similar	to	
difference	between	king	and	queen

‣ Can	evaluate	on	this	as	well

What	can	go	wrong	with	word	embeddings?

‣What’s	wrong	with	learning	a	word’s	“meaning”	from	its	usage?

‣What	data	are	we	learning	from?

‣What	are	we	going	to	learn	from	this	data?



What	do	we	mean	by	bias?

‣ IdenIfy	she	-	he	axis	in	
word	vector	space,	
project	words	onto	this	
axis

Bolukbasi	et	al.	(2016)

Manzini	et	al.	(2019)

‣ Nearest	neighbor	of	(b	-	
a	+	c)

Debiasing

Bolukbasi	et	al.	(2016)

‣ IdenIfy	gender	subspace	with	gendered	
words

she

he

homemaker

woman

man

‣ Project	words	onto	this	subspace

‣ Subtract	those	projecIons	from	
the	original	word

homemaker’

Hardness	of	Debiasing

Gonen	and	Goldberg	(2019)

‣ Not	that	effecIve…and	the	male	
and	female	words	are	sIll	
clustered	together

‣ Bias	pervades	the	word	embedding	
space	and	isn’t	just	a	local	property	
of	a	few	words

Takeaways

‣ Lots	to	tune	with	neural	networks

‣Word	vectors:	learning	word	->	context	mappings	has	given	way	to	
matrix	factorizaIon	approaches	(constant	in	dataset	size)

‣ Training:	opImizer,	iniIalizer,	regularizaIon	(dropout),	…

‣ Hyperparameters:	dimensionality	of	word	embeddings,	layers,	…

‣ Next	Ime:	RNNs	and	CNNs

‣ Lots	of	pretrained	embeddings	work	well	in	pracIce,	they	capture	some	
desirable	properIes

‣ Even	be8er:	context-sensiIve	word	embeddings	(ELMo)


