
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	8:	RNNs

Credit:	Chelsea	Voss	csvoss.com

Administrivia

‣Mini	1	results	discussed	at	end	of	lecture

‣ Project	1	due	tonight

‣Mini	2	out	Thursday

Recall:	Training	Tips

‣ Parameter	iniIalizaIon	is	criIcal	to	get	good	gradients,	some	useful	
heurisIcs	(e.g.,	Glorot	iniIalizer)

‣ Dropout	is	an	effecIve	regularizer,	gradient	clipping	is	useful

‣ Think	about	your	
opImizer:	Adam	
or	tuned	SGD	
work	well

Recall:	Word	Vectors

good
enjoyable

bad

dog

great

is



Recall:	ConInuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

+

sum,	size	d
P (w|w�1, w+1)

soWmax
MulIply 
by	W

‣Matrix	factorizaIon	approaches	useful	for	learning	
vectors	from	really	large	data

Mikolov	et	al.	(2013)

‣ Use	W’s	rows	or	the	context	embeddings	as	word	vectors

This	Lecture

‣ Vanishing	gradient	problem

‣ Recurrent	neural	networks

‣ LSTMs	/	GRUs

‣ ApplicaIons	/	visualizaIons

RNN	Basics

RNN	MoIvaIon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiIon	in	the	
feature	vector	has	fixed	semanIcs

‣ Instead,	we	need	to:
1)	Process	each	word	in	a	uniform	way

the		movie		was			great that			was			great					!

2)	…while	sIll	exploiIng	the	context	that	that	token	occurs	in

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)



RNN	AbstracIon
‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	that	
hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y

RNN	Uses
‣ Transducer:	make	some	predicIon	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	senIment	(matmul	+	soWmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	soWmax

Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

‣ Long	history!	(invented	in	the	late	1980s)

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)

Training	Elman	Networks

the		movie		was			great

predict	senIment

‣ “BackpropagaIon	through	Ime”:	build	the	network	as	one	big	
computaIon	graph,	some	parameters	are	shared

‣ RNN	potenIally	needs	to	learn	how	to	“remember”	informaIon	for	a	
long	Ime!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+

‣ “Correct”	parameter	update	is	to	do	a	be8er	job	of	remembering	the	
senIment	of	favorite



Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	not	in	[-2,	2],	
gradient	is	almost	0

<-	gradient<-	smaller	gradient<-	Iny	gradient

h8p://colah.github.io/posts/2015-08-
Understanding-LSTMs/

‣ Repeated	mulIplicaIon	by	V	causes	problems ht = tanh(Wxt + V ht�1 + bh)

LSTMs/GRUs

Gated	ConnecIons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	(0,	1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣ 	If	f	≈	1,	we	simply	sum	up	a	funcIon	of	all	inputs	—	gradient	
doesn’t	vanish!	More	stable	without	matrix	mulIply	(V)	as	well

LSTMs

‣ “Cell”	c	in	addiIon	to	hidden	state	h

‣ Vector-valued	forget	gate	f	depends	on	the	h	hidden	state

‣ Basic	communicaIon	flow:	x	->	c	->	h	->	output,	each	step	of	this	
process	is	gated	in	addiIon	to	gates	from	previous	Imesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h8p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ f,	i,	o	are	gates	that	control	informaIon	flow
‣ g	reflects	the	main	computaIon	of	the	cell

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can	we	ignore	the	old	value	of	c	for	this	Imestep?

‣ Can	we	ignore	a	parIcular	input	x?
‣ Can	an	LSTM	sum	up	its	inputs	x?

‣ Can	we	output	something	without	changing	c?

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h8p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ Ignoring	recurrent	state	enIrely:

‣ Lets	us	discard	stopwords
‣ Summing	inputs:

‣ Lets	us	get	feedforward	layer	over	token

‣ Ignoring	input:

‣ Lets	us	compute	a	bag-of-words 
representaIon

LSTMs

‣ Gradient	sIll	diminishes,	but	in	a	controlled	way	and	generally	by	less	—	
usually	iniIalize	forget	gate	=	1	to	remember	everything	to	start

<-	gradientsimilar	gradient	<-

h8p://colah.github.io/posts/2015-08-Understanding-LSTMs/



GRUs
‣ z	is	update,	r	is	reset

Credit:	Wikipedia

‣ The	single	hidden	state	and	simpler	
update	gate	gives	simpler	mixing	
semanIcs	than	in	LSTMs

‣ Faster	to	train	and	someImes	works	
be8er	than	LSTMs,	oWen	a	tossup

What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predicIon	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classificaIon	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transformaIon	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors

MulIlayer	BidirecIonal	RNN

‣ Sentence	classificaIon	
based	on	concatenaIon	
of	both	final	outputs

‣ Token	classificaIon	based	on	
concatenaIon	of	both	direcIons’	
token	representaIons

the		movie		was			great the		movie		was			great

Training	RNNs

the		movie		was			great

‣ Loss	=	negaIve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	enIre	network
‣ Example:	senIment	analysis



Training	RNNs

the		movie		was			great

‣ Loss	=	negaIve	log	likelihood	of	probability	of	gold	predicIons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)

ApplicaIons

What	can	LSTMs	model?
‣ SenIment

‣ TranslaIon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leW-to-right,	per-token	predicIon

‣ Encode	sentence	+	then	decode,	use	token	predicIons	for	a8enIon	
weights	(later	in	the	course)

Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Counter:	know	when	to	generate	\n
‣ Visualize	acIvaIons	of	specific	cells	(components	of	c)	to	understand	them



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Binary	switch:	tells	us	if	we’re	in	a	quote	or	not
‣ Visualize	acIvaIons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Stack:	acIvaIon	based	on	indentaIon
‣ Visualize	acIvaIons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	acIvaIon

‣ Visualize	acIvaIons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

What	can	LSTMs	model?
‣ SenIment

‣ TranslaIon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leW-to-right,	per-token	predicIon

‣ Encode	sentence	+	then	decode,	use	token	predicIons	for	a8enIon	
weights	(next	lecture)

‣ Textual	entailment

‣ Encode	two	sentences,	predict



SenIment	Analysis

Dai	and	Le	(2015)

‣ Semi-supervised	method:	iniIalize	the	language	model	by	training	to	
reproduce	the	document	in	a	seq2seq	fashion	(discussed	in	a	few	
lectures),	called	a	sequenIal	autoencoder

be8er	than	tuned	
Naive	Bayes	when	
using	the	SA	trick

Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambiIous	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)

Premise Hypothesis

SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capIons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)

300D	BiLSTM:	83%	accuracy	
																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process

‣ Later:	be8er	models	for	this

Takeaways

‣ RNNs	can	transduce	inputs	(produce	one	output	for	each	input)	or	
compress	the	whole	input	into	a	vector

‣ Useful	for	a	range	of	tasks	with	sequenIal	input:	senIment	analysis,	
language	modeling,	natural	language	inference,	machine	translaIon

‣ Next	Ime:	CNNs	and	neural	CRFs



Mini	1	Results
‣Mini	1	test	F1	results:

Xiaoyang	Shen	87.60

Rajat	Jain	87.59

Kaj	Bostrom	87.32

Yejin	Cho	87.24

>	87:	Anubrata	Das,	Rudrajit	Das,	Fengyu	Deng,	Chinmoy	Samant,	Ting-Yu	Yen

‣ L2	regularizaIon,	shuffling	across	epochs,	
class	weighIng	from	sk-learn,	+/-2	words	
and	prefixes+suffixes	

‣ Adding	indicator	of	whether	it	was	PERSON	
(gaze8eer)	in	train	hurt	performance

‣ POS=NNP	feature


