
CS395T Project 2: Shift-Reduce Parsing

Quinten McNamara

The University of Texas at Austin
quinten.mcnamara@gmail.com

1 Problem Statement

In this work, I implemented shift-reduce parsing
algorithms to create dependency trees for English
sentences. The two main approaches were: a
greedy model that used local features in a mul-
ticlass logistic regression, and a global model
that used the beam-search algorithm to parse
trees, with a structured perceptron making deci-
sions. The global beam model showed promise
for achieving the best results, and given enough
time and space resources this could have been
tested. Nevertheless, the best achieving algorithm
was still the greedy model. The best perform-
ing greedy model achieved a unlabeled attachment
score of 79.42. I also investigated the performance
of each model on various languages other than En-
glish.

2 Models

2.1 Greedy

2.1.1 Implementation

The greedy model performed decoding by mak-
ing local action decisions at each step of the shift-
reduce framework until reaching a finished state. I
used a multiclass logistic regression classifier (aka
perceptron with softmax activation) to make local
decisions based on the provided set of extracted
features. The decision with the highest probabil-
ity was selected. In order to prevent illegal ac-
tions, I hard-coded the following restrictions on
the model: if stack size is less than 2 then shift,
if buffer size is zero then don’t shift, if root is
the second stack item, don’t left arc. For training,
I implemented an AdaGrad optimized version of
stochastic gradient ascent (SGD) using predicted
softmax probabilities to find expected feature val-
ues and gradients.

2.1.2 Configuration

Stochastic gradient ascent was run for 3 epochs us-
ing the provided AdaGrad optimizer. The lambda
parameter was set to 1e-8, which showed to im-

prove performance of the default 1e-5 from 77.49
UAS to 79.42 UAS. Weights were initialized to ze-
ros.

2.2 Global Beam

2.2.1 Implementation

The global beam model parsed sentences by mak-
ing 2n predictions, and using the beam to keep
track of the best predictions made thus far. In a
similar manner to the greedy model, actions were
determined by taking the argmax of the output
from a generalized perceptron, as seen in (Zhang
and Clark, 2011). For most of the trials, I used
the averaged perceptron model as a form of regu-
larizing the final weight vector, which showed to
slightly improve performance (Zhang and Clark,
2011). I also enforced the same legal action re-
strictions discussed in Section 2.1.1. Global train-
ing was done by decoding a whole sentence, and
using the difference between accumulated features
and accumulated gold features as the gradient up-
date to the weights. Unlike for the greedy model,
I did not get around to implementing AdaGrad
for the structured perceptron training in the global
beam model.

2.2.2 Configuration

Stochastic gradient ascent was run for 3 epochs
using a constant learning rate of 1.0. Weights were
initialized to zeros.

2.3 Extensions

2.3.1 Beam Manipulation

After reading some analysis presented in (Zhang
and Nivre, 2012), I decided to investigate how ma-
nipulating the beam size between training and test-
ing could influence results. In (Zhang and Nivre,
2012), they found that providing larger beam sizes
at test time did not improve performance, and any
mismatch between training and testing beam sizes
significantly hurt performance. In this analysis, I
used smaller beam sizes due to computational lim-
its.



2.3.2 Non-English Languages

As another extension, I experimented with other
non-English languages in order to observe which
languages perform worse or better, as well as
which model does better at each language. To
avoid using too much memory in the feature cache,
I truncated the number of sentences in the Chinese
training set from roughly 59,000 to 40,000.

3 Results

3.1 Main Results

As Table 1 indicates, the greedy model with local
decisions performed better than the global beam
model. However, as expected, performance of
the beam model got slightly better and better with
larger and larger beams.

Model Learning UAS

Greedy SGD+AdaGrad 80.15

Global beam=1 SGD+avg perceptron 73.65
Global beam=5 SGD+avg perceptron 74.10
Global beam=5 SGD+perceptron 73.55
Global beam=8 SGD+avg perceptron 74.96

Table 1: Main results. For model descriptions
Global beam=x, x indicates the beam size.

Nonetheless, it was not feasible to experiment
with large beams, as a beam size of 8 took 40-50
minutes per epoch. In addition, the average per-
ceptron method as a form of regularization seemed
to do well, as indicated by the performance bump
from the third to second row. Finally, it should
also be noted that the greedy model was trained
with the AdaGrad optimizer, whereas the global
model used a constant learning rate of 1.0.

3.2 Beam Manipulation

As Table 2 illustrates, the results were consistent
with (Zhang and Nivre, 2012). Any experiment
with mismatching training and testing beam size
did significantly worse than the others.

Train beam size Test beam size UAS

1 1 73.65
1 5 59.19
5 1 40.23
5 5 74.10

Table 2: Results for manipulating the beam sizes
at training and testing times.

3.3 Non-English Results

Table 3 shows the results on non-English lan-
guages. Surprisingly, both models did better on
Chinese and Japanese relative to English. This
trend differs that presented in (Zhang and Clark,
2011), though this is likely due to custom model
tuning for English data.

Language Sentence count Model UAS

Arabic 1460 Greedy 70.50
Arabic 1460 Global 67.60
Chinese 40000 Greedy 83.50
Chinese 40000 Global 79.85
Japanese 17044 Greedy 89.70
Japanese 17044 Global 81.70

Table 3: Results for various non-English lan-
guages.

Moreover, across all languages, the greedy
model outperformed the global beam model, by
roughly the same margin for each language.

4 Discussion

Although the UAS marginally increases with big-
ger and bigger beams, the gains found in Table
1 are not overwhelming, particularly given that
the greedy model still does significantly better.
This is also partially an unfair comparison, as the
greedy model parameters were tuned using Ada-
Grad whereas the global beam model was tuned
using a constant learning rate of 1.0. It would
be beneficial to compare the models when train-
ing hyperparameters are more or less consistent.
Given the speed of training and testing on the
global model with large beams, the greedy model
seems like the optimal algorithm for dependency
parsing.

In addition, I found that mismatching training
and testing beam sizes led to relatively terrible per-
formance. This is despite the fact that, for exam-
ple, a globally trained model with a beam size of
one is given more information during decoding of
testing examples with a beam size of five. This
may be a result of the weights of the structured
perceptron over-fitting or at least specializing to a
particular beam size.

As discussed by (Marton et al., 2013), morpho-
logically rich languages tend to use feature like
word order less in syntactic modeling. This could
explain why the results obtained for Arabic are



much worse than that of English, as our features
primarily rely on word order and part of speech.
This could also explain why Chinese and Japanese
were easier for the models presented in this anal-
ysis. Both of those languages rely less on word
morphology and tenses, and primarily use word
ordering to establish syntactic dependencies.

References

Yuval Marton, Nizar Habash, and Owen Rambow.
2013. Dependency parsing of modern standard ara-
bic with lexical and inflectional features. Computa-
tional Linguistics 39(1):161–194.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational linguistics 37(1):105–151.

Yue Zhang and Joakim Nivre. 2012. Analyzing
the effect of global learning and beam-search on
transition-based dependency parsing. In COLING
(Posters). pages 1391–1400.


