Parser Evaluation

View a parse as a set of labeled brackets / constituents

S(0,3)

NP(0,1)

PRP(0,1) (but standard evaluation does not count POS tags)

VP(1,3), VBD(1,2), NP(2,3), PRP(2,3)

Precision: number of correct predictions / number of predictions = 2/3

Recall: number of correct predictions / number of golds = 2/4

F1: harmonic mean of precision and recall = \((1/2 * ((2/4)^{-1} + (2/3)^{-1}))^{-1}\) = 0.57 (closer to min)

Results

Standard dataset for English: Penn Treebank (Marcus et al., 1993)

"Vanilla" PCFG: ~71 F1

Best PCFGs for English: ~90 F1

State-of-the-art discriminative models (using unlabeled data): 95 F1

Other languages: results vary widely depending on annotation + complexity of the grammar
Refining Generative Grammars

PCFG Independence Assumptions

- Language is not context-free: NPs in different contexts rewrite differently
- \([\text{They}]_{NP}\) received \([\text{the package of books}]_{NP}\)

Vertical Markovization

- Basic tree (\(v = 1\))
- \(v = 2\) Markovization

Annotating Trees

- First apply vertical Markovization, then do another transformation during binarization
Tag Splits

- Can do some other specialized tag splits: e.g., sentential prepositions behave differently from other prepositions
- ~70 F1 => 86.3 F1 using these tricks

Klein and Manning (2003)

Lexicalized Parsing, Dependency Parsing

Lexicalized Parsers

- Annotate each grammar symbol with its “head word”: most important word of that constituent
- Rules for identifying headwords (e.g., the last word of an NP before a preposition is typically the head)
- Collins and Charniak (late 90s): ~89 F1 with these

Lexicalized Parsing

- S(ran)
- NP(dog)
- VP(ran)
- PP(to)
- DT(the) the
- NN(dog) dog
- VBD(ran) ran
- TO(to) to
- DT(the) the
- NN(house) house
Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph
- POS tags same as before, usually run a tagger first as preprocessing

Why are they defined this way?

- Constituency tests:
 - Substitution by proform: the dog did so [ran to the house], he [the dog] ran to the house
 - Clefting (It was [to the house] that the dog ran...)
- Dependency: verb is the root of the clause, everything else follows from that
- No notion of a VP!

Still a notion of hierarchy! Subtrees often align with constituents

Can label dependencies according to syntactic function

- Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)
Dependency vs. Constituency: PP Attachment

- Constituency: several rule productions need to change

Dependency vs. Constituency: PP Attachment

- Dependency: one word (with) assigned a different parent

More predicate-argument focused view of syntax

“What’s the main verb of the sentence? What is its subject and object?” — easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

- Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination

- Dependency: first item is the head

Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency

Can also choose *and* to be the head

In both cases, headword doesn’t really represent the phrase — constituency representation makes more sense
Shift-Reduce Parsing
(see notes)