CS 378 Lecture 14

Today
- Shift-reduce parsing
- Midterm review

I ate and drank

Recap Dependencies
- Each word has one parent

Root

I ate the cake with a fork

- Verbs are heads of sentences
- Verbs have nouns, prepositions as children most frequently

Advantages:
- Some attachments make more sense than in constituency
- Easier to adapt to a wide range of languages
Announcements

- A3 due
- No lecture Thursday
- Midterm: Weds 9am - Fri 5pm
 - Ask Qs via email or in private Piazza posts
 - Open book, NOT collaborative!
- Extra OHs today
 1:30-2:30
 No OHs Weds - Fri:

Shift-reduce parsing

- Move through a sentence word-by-word
 + make decisions as we go
Stack: partial parse trees
Buffer: rest of the sentence
Initial state: \downarrow I ate some spaghetti bolognese

Stack: [ROOT]
Buffer: [I ate some spaghetti bolognese]

Three ops:
- Shift first word from buffer to stack
- Reduce: left-arc, right-arc
- Add an arc to combine items on the stack

S [ROOT] B [I ate some spaghetti bolognese]

S [ROOT I] B [ate some spaghetti bolognese]

S [ROOT I ate] B [some spaghetti bolognese]
Garden path: The horse raced past the barn that fell.

2. Left-arc: takes top two els of stack, makes 2nd-to-last a child of the last one, adds to stack

```
[ shift ]  [ shift ]
```

```
S [ ROOT ate ]  B [ some spa bo ]
```

```
S [ ROOT ate some sp ]  B [ bo ]
```

```
S [ ROOT ate sp ]  B [ bo ]
```

DO NOT R-A!
3. Right-arc: takes top two elts from stack makes last a child of 2nd-to-last, adds

Right-arc

S [ROOT ate sp] B []

\[
\begin{array}{c}
\text{some} \\
\text{bo}
\end{array}
\]

Right-arc

S [ROOT ate]

len 2

I

sp

\[
\begin{array}{c}
\text{some} \\
\text{bo}
\end{array}
\]

R-A

S []

\[
\begin{array}{c}
\text{ROOT} \\
\text{ate} \\
\text{sp} \\
\text{some} \\
\text{bo}
\end{array}
\]
Building Shift-reduce parsers

Our parser is a classifier

Maps from state (Stack, buffer) to one of three actions

Features \(f(S, B) \) \[
\text{"Different weights"} \quad W_{sh} \quad W_{ra} \quad W_{la} \]

\text{dot product}

Features are complex!

\[S \left[\text{ate} \right] \quad B \left[\text{the ...} \right] \]

Indicator \(\text{last word on stack is a verb \& first Buf word is } \text{the} \)
Midterm review

Start symbol: [VP]

VP → V VP* 0.5
VP → V NNS 0.5
VP* → NNS PP 1.0
PP → P NNS 1.0

Rest follows the sheet, ignore Q1

-1 from rule

$P(\text{rule|VP})$ must normalize

$sells$ $books$
Scores: \(\log P(T|x) \)

- \(v: -1 \) NNS: -1
- \(v: -1 \)
- \(v: -2 \)
- \(v: -1 \) NNS: -1
- \(p: 0 \)
- \(v: -1 \) NNS: -1

Sells books + books

Splits here

Delexicalize VP

VP

V

sells

VP

NNS
books

PP

sells books p NNS

to books

P

NNS
to books
Logistic regression: loss when $y^{(i)} = +1$

$$- \log P(y = +1 | x)$$

$$= - \log \frac{e^{\mathbf{w}^T f(x)}}{1 + e^{\mathbf{w}^T f(x)}}$$

$$= - \mathbf{w}^T f(x) + \log \left(1 + e^{\mathbf{w}^T f(x)} \right)$$

$$= - z + \log (1 + e^z)$$

Perception: penalize by how wrong it is correct $= 0$ loss