
CS 378 Lecture 16

Today
INNS
- LSTMS (the type of RNN you

will be using)
- Implementation
Announcements

ater today
- midterm back Monday

Recipe RNNs t language[ modeling
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Training " Backpropagation through time
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Multiple updates for
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sum them together
Backprop : loss → gradient for each

param



Lsts
what we've seen so far is a

recipe for RNNS

Many types of RNNS

Long short - term memory ( LSTM)
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RNN state is a

"

short-term memory
"

( stirs are better at remembering
info for more time steps

problem with Elman networks :

vanishing gradient problem
( exploding)
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LSTM definition
-

Elman : Ii = tanh (WE + VT; . . )
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f- : forget gale in. input gate
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Real LSTM : next page
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Chris Olah blog
LSTM : 8 weight matrices
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forget bias
Poll : s
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Most recent stuff is more relevant

forget gate high : charges further
back matter more


