

Montague Semantics

• We can use the syntactic parse as a bridge to the lambda-calculus

representation, build up a logical form (our model) compositionally

Combinatory Categorial Grammar

- ▶ Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- ▶ Parallel derivations of syntactic parse and lambda calculus expression
- Syntactic categories (for this lecture): S, NP, "slash" categories
- ► S\NP: "if I combine with an NP on my left side, I form a sentence" verb
- When you apply this, there has to be a parallel instance of function application on the semantics side

Combinatory Categorial Grammar

- ▶ Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- ▶ Syntactic categories (for this lecture): S, NP, "slash" categories
 - ▶ S\NP: "if I combine with an NP on my left side, I form a sentence" verb
 - (S\NP)/NP: "I need an NP on my right and then on my left" verb with a direct object

CCG Parsing

What	states	border	Texas
$\overline{(S/(S\backslash NP))/N}$	$\overline{}$	$\overline{(S\backslash NP)/NP}$	\overline{NP}
$\lambda f.\lambda g.\lambda x.f(x) \wedge g(x)$	$\lambda x.state(x)$	$\lambda x. \lambda y. borders(y, x)$	texas
		$(S \backslash NP)$	>
		$\lambda y.borders(y,texas)$	

"What" is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)

Zettlemoyer and Collins (2005)

CCG Parsing

What	states	border	Texas		
$\frac{(S/(S\backslash NP))/N}{\lambda f.\lambda g.\lambda x. f(x) \wedge g(x)}$	$\overline{}$	$\frac{(S\backslash NP)/NP}{\lambda x. \lambda y. borders(y, x)}$	\overline{NP}		
$\lambda f.\lambda g.\lambda x.f(x) \wedge g(x)$	$\lambda x.state(x)$	$\lambda x. \lambda y. borders(y,x)$	texas		
\longrightarrow $S/(S\backslash NP)$		${(S \backslash NP)}$			
$S/(S \backslash NP) \ \lambda g. \lambda x. state(x) \wedge g(x)$		$(S \backslash NP) \ \lambda y.borders(y, texas)$			

 $\lambda x.state(x) \land borders(x, texas)$

- "What" is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)
- What in this case knows that there are two predicates (states and border Texas). This is not a general thing Zettlemoyer and Collins (2005)

CCG Parsing

▶ These question are compositional: we can build bigger ones out of smaller pieces

What states border Texas?

What states border states bordering Texas?

What states border states bordering states bordering Texas?

CCG Parsing

- ▶ Many ways to build these parsers
- ▶ One approach: run a "supertagger" (tags the sentence with complex labels), then run the parser

	border	Texas
$\frac{(S/(S\backslash NP))/N}{\lambda f. \lambda g. \lambda x. f(x) \wedge g(x)} \frac{N}{\lambda x. state(x)}$	$(S\backslash NP)/NP \ \lambda x. \lambda y. borders(y, x)$	NP texas

 Parsing is easy once you have the tags, so we've reduced it to a (hard) tagging problem

Zettlemoyer and Collins (2005)

Training CCG Parsers

▶ Training data looks like pairs of sentences and logical forms

What states border Texas λx . state(x) \wedge borders(x, e89)

What borders Texas λx . borders (x, e89)

▶ Unlike PCFGs, we don't know which words yielded which fragments of CCG

Requires an "unsupervised" approach like Model 1 for word alignment

Zettlemoyer and Collins (2005)

Seq2seq Semantic Parsing

Semantic Parsing as Translation

```
"what states border Texas"
↓
lambda x ( state ( x ) and border ( x , e89 ) ) )
```

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation
- ▶ What are some benefits of this approach compared to grammar-based?
- What might be some concerns about this approach? How do we mitigate them?

Jia and Liang (2016)

Handling Invariances

"what states border Texas"

"what states border Ohio"

- Parsing-based approaches handle these the same way
- ▶ Possible divergences: features, different weights in the lexicon
- ▶ Can we get seq2seq semantic parsers to handle these the same way?
- ▶ Key idea: do data augmentation by synthetically creating more data from a single example

Semantic Parsing as Translation

- Prolog
- ▶ Lambda calculus
- Other DSLs

▶ Handle all of these with uniform machinery!

Jia and Liang (2016)

Semantic Parsing as Translation

	GEO	ATIS
Previous Work		
Zettlemoyer and Collins (2007)		84.6
Kwiatkowski et al. (2010)	88.9	
Liang et al. (2011) ²	91.1	
Kwiatkowski et al. (2011)	88.6	82.8
Poon (2013)		83.5
Zhao and Huang (2015)	88.9	84.2
Our Model		
No Recombination	85.0	76.3
ABSENTITIES	85.4	79.9
ABSWHOLEPHRASES	87.5	
Concat-2	84.6	79.0
CONCAT-3		77.5
AWP + AE	88.9	
AE + C2		78.8
AWP + AE + C2	89.3	
AE + C3		83.3

- ▶ Three forms of data augmentation all help
- Results on these tasks are still not as strong as hand-tuned systems from 10 years ago, but the same simple model can do well at all problems

Jia and Liang (2016)

Applications

- ▶ GeoQuery (Zelle and Mooney, 1996): answering questions about states (~80% accuracy)
- ▶ Jobs: answering questions about job postings (~80% accuracy)
- > ATIS: flight search
- ► Can do well on all of these tasks if you handcraft systems and use plenty of training data: these domains aren't that rich

Next Time

- QA from raw text: how do we answer a question about a passage?
- ▶ Neural networks for QA
- ▶ Final project discussion