



#### **BERT**

- ▶ AI2 made ELMo in spring 2018, GPT (transformer-based ELMo) was released in summer 2018, BERT came out October 2018
- ▶ Four major changes compared to ELMo:
  - ▶ Transformers instead of LSTMs
  - ▶ Bidirectional model with "Masked LM" objective instead of standard LM
  - ▶ Fine-tune instead of freeze at test time
  - Operates over word pieces (byte pair encoding)







## Masked Language Modeling

- ▶ How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling
- BERT formula: take a chunk of text, mask out 15% of the tokens, and try to predict them



Devlin et al. (2019)



### Next "Sentence" Prediction

- ▶ Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- ▶ 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- ▶ BERT objective: masked LM + next sentence prediction



[CLS] John visited [MASK] yesterday and really [MASK] it [SEP] / [MASK] Madonna.

Devlin et al. (2019)



#### **BERT Architecture**

- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads.Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- ▶ This is the model that gets pre-trained on a large corpus





Devlin et al. (2019)

# Class Label CT, T2 TS BERT Single Sentence (b) Single Sentence (b) Single Sentence (c) Single Sentence (d) Sentence (e) Single Sentence (b) Single Sentence

# What can BERT do?



- ▶ Artificial [CLS] token is used as the vector to do classification from
- ▶ Sentence pair tasks (entailment): feed both sentences into BERT
- ▶ BERT can also do tagging by predicting tags at each word piece Devlin et al. (2019)





#### What can BERT NOT do?

- ▶ BERT cannot generate text (at least not in an obvious way)
- ➤ Can fill in MASK tokens, but can't generate left-to-right (well, you could put MASK at the end repeatedly, but this is slow)
- Masked language models are intended to be used primarily for "analysis" tasks



## Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5



SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist



## Fine-tuning BERT

| Pretraining   | Adaptation     | NER<br>CoNLL 2003 | SA<br>SST-2 | Nat. lang | g. inference<br>SICK-E | Semantic textual similarity SICK-R MRPC STS-B |      |      |  |
|---------------|----------------|-------------------|-------------|-----------|------------------------|-----------------------------------------------|------|------|--|
| Skip-thoughts | *              | -                 | 81.8        | 62.9      | -                      | 86.6                                          | 75.8 | 71.8 |  |
| ELMo          | *              | 91.7              | 91.8        | 79.6      | 86.3                   | 86.1                                          | 76.0 | 75.9 |  |
|               | <b>ĕ</b>       | 91.9              | 91.2        | 76.4      | 83.3                   | 83.3                                          | 74.7 | 75.5 |  |
|               | $\Delta = 0$ - | 0.2               | -0.6        | -3.2      | -3.3                   | -2.8                                          | -1.3 | -0.4 |  |
| BERT-base     | *              | 92.2              | 93.0        | 84.6      | 84.8                   | 86.4                                          | 78.1 | 82.9 |  |
|               | <b>&amp;</b>   | 92.4              | 93.5        | 84.6      | 85.8                   | 88.7                                          | 84.8 | 87.1 |  |
|               | Δ=∅-₩          | 0.2               | 0.5         | 0.0       | 1.0                    | 2.3                                           | 6.7  | 4.2  |  |

 $\,\blacktriangleright\,$  BERT is typically better if the whole network is fine-tuned, unlike ELMo

Peters, Ruder, Smith (2019)



#### **Evaluation: GLUE**

| Corpus                | Train                                | Test | Task                | Metrics                                    | Domain          |  |  |  |
|-----------------------|--------------------------------------|------|---------------------|--------------------------------------------|-----------------|--|--|--|
| Single-Sentence Tasks |                                      |      |                     |                                            |                 |  |  |  |
| CoLA                  | 8.5k 1k acceptability Matthews corr. |      |                     | Matthews corr.                             | misc.           |  |  |  |
| SST-2                 | 67k                                  | 1.8k | sentiment           | acc.                                       | movie reviews   |  |  |  |
|                       |                                      |      | Similarity and      | l Paraphrase Tasks                         |                 |  |  |  |
| MRPC                  | 3.7k                                 | 1.7k | paraphrase          | aphrase acc./F1                            |                 |  |  |  |
| STS-B                 | 7k                                   | 1.4k | sentence similarity | sentence similarity Pearson/Spearman corr. |                 |  |  |  |
| QQP                   | 364k                                 | 391k | paraphrase          | hrase acc./F1                              |                 |  |  |  |
|                       |                                      |      | Infere              | ence Tasks                                 |                 |  |  |  |
| MNLI                  | 393k                                 | 20k  | NLI                 | matched acc./mismatched acc.               | misc.           |  |  |  |
| QNLI                  | 105k                                 | 5.4k | QA/NLI              | acc.                                       | Wikipedia       |  |  |  |
| RTE                   | 2.5k                                 | 3k   | NLI                 | acc.                                       | news, Wikipedia |  |  |  |
| WNLI                  | 634                                  | 146  | coreference/NLI     | acc.                                       | fiction books   |  |  |  |

Wang et al. (2019)



#### Results

| System           | MNLI-(m/mm) | QQP         | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE         | Average |
|------------------|-------------|-------------|------|-------|------|-------|------|-------------|---------|
|                  | 392k        | 363k        | 108k | 67k   | 8.5k | 5.7k  | 3.5k | 2.5k        | -       |
| Pre-OpenAI SOTA  | 80.6/80.1   | 66.1        | 82.3 | 93.2  | 35.0 | 81.0  | 86.0 | 61.7        | 74.0    |
| BiLSTM+ELMo+Attn | 76.4/76.1   | 64.8        | 79.9 | 90.4  | 36.0 | 73.3  | 84.9 | 56.8        | 71.0    |
| OpenAI GPT       | 82.1/81.4   | 70.3        | 88.1 | 91.3  | 45.4 | 80.0  | 82.3 | 56.0        | 75.2    |
| BERTBASE         | 84.6/83.4   | 71.2        | 90.1 | 93.5  | 52.1 | 85.8  | 88.9 | 66.4        | 79.6    |
| $BERT_{LARGE}$   | 86.7/85.9   | <b>72.1</b> | 91.1 | 94.9  | 60.5 | 86.5  | 89.3 | <b>70.1</b> | 81.9    |

- ▶ Huge improvements over prior work (even compared to ELMo)
- ▶ Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. (2018)



## **RoBERTa**

- ▶ "Robustly optimized BERT"
- ▶ 160GB of data instead of 16 GB
- Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them
- SQuAD Model MNLI-m SST-2 (v1.1/2.0) RoBERTa with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3 + additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6 + pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1 + pretrain even longer 160GB 8K 500K 94.6/89.4 96.4 BERT with BOOKS + WIKI 13GB 256 1M 90.9/81.8 93.7

▶ New training + more data = better performance

Liu et al. (2019)



# **Using BERT**

- ▶ Huggingface Transformers: big open-source library with most pre-trained architectures implemented, weights available
- ▶ Lots of standard models...

Model architectures

and Alexis Conneau.

- Pransformers currently provides the following NLU/NLG architectures:
- BERT (from Google) released with the paper BERT: Pre-training of Deep Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Krist
   GPT (from OpenAl) released with the paper Improving Language Under
- Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.

  3. GPT-2 (from OpenAl) released with the paper Language Models are Un
  Jeffrey Wu\*, Rewon Child, David Luan, Dario Amodei\*\* and Ilya Sutskev
- 4. Transformer-XL (from Google/CMU) released with the paper Transform Fixed-Length Context by Zihang Dai\*, Zhillin Yang\*, Yiming Yang, Jaime
- XLNet (from Google/CMU) released with the paper XLNet: Generalized Understanding by Zhilin Yang\*, Zihang Dai\*, Yiming Yang, Jaime Carbon 6. XLM (from Facebook) released together with the paper Cross-lingual Li
- 7. RoBERTa (from Facebook), released together with the paper a Robusti

• • • •

and "community models"

mrm8488/spanbert-large-finetuned-tacred mrm8488/xlm-multi-finetuned-xquadvl

nlpaueb/bert-base-greek-uncased-v1 🕏

nlptown/bert-base-multilingual-uncased-sentiment
patrickvonplaten/reformer-crime-and-punish

redewiedergabe/bert-base-historical-german-rw-cased

roberta-base \*

severinsimmler/literary-german-bert

seyonec/ChemBERTa-zinc-base-v1



 Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Clark et al. (2019)



Still way worse than what supervised systems can do, but interesting that this is learned organically

Clark et al. (2019)