

Announcements

- ▶ FP check-in due today, will be returned soon
- ▶ A4 back today, A5 back soon
- ▶ eCIS evaluations: please fill these out

Multilinguality

Dealing with other languages

- ▶ Other languages present some challenges not seen in English at all!
- ▶ Some of our algorithms have been specified to English
 - ▶ Some structures like constituency parsing don't make sense for other languages
 - ▶ Neural methods are typically tuned to English-scale resources, may not be the best for other languages where less data is available
- Question:
 - 1) What other phenomena / challenges do we need to solve?
 - 2) How can we leverage existing resources to do better in other languages without just annotating massive data?

This Lecture

- Morphological richness: effects and challenges
- ▶ Morphology tasks: analysis, inflection, word segmentation
- ▶ Cross-lingual tagging and parsing
- ▶ Cross-lingual word representations

Morphology

What is morphology?

- ▶ Study of how words form
- Derivational morphology: create a new *lexeme* from a base estrange (v) => estrangement (n)
 become (v) => unbecoming (adj)
 - ▶ May not be totally regular: enflame => inflammable
- ▶ Inflectional morphology: word is inflected based on its context
 I become / she becomes
 - ▶ Mostly applies to verbs and nouns

Morphological Inflection

In English: I arrive you arrive he/she/it arrives

we arrive you arrive they arrive

[X] arrived

In French:

				singular			plural	
			first	second	third	first	second	third
	indicative		je (j')	tu	il, elle	nous	vous	ils, elles
		present	arrive	arrives	arrive	arrivons	arrivez	arrivent
	(simple tenses)		/a.ĸiv/	/a.ĸiv/	/a.ĸiv/	/a.ĸi.vɔ̃/	/a.ki.ve/	/a.ĸiv/
		imperfect	arrivais	arrivais	arrivait	arrivions	arriviez	arrivaient
			/a.ĸi.vɛ/	/a.ĸi.vɛ/	/a.ki.vɛ/	/a.ĸi.vjɔ̃/	/a.ʁi.vje/	/a.ki.vɛ/
		past historic ²	arrivai	arrivas	arriva	arrivâmes	arrivâtes	arrivèrent
			/a.ĸi.vɛ/	/a.ʁi.va/	/a.ʁi.va/	/a.ʁi.vam/	/a.ʁi.vat/	\arapsi.ner\
		future	arriverai	arriveras	arrivera	arriverons	arriverez	arriveront
			/a.ki.vkɛ/	/a.ki.vka/	/a.ĸi.vĸa/	/a.ĸi.vĸɔ̯/	/a.ki.vke/	/a.ĸi.vĸɔ̯/
		conditional	arriverais	arriverais	arriverait	arriverions	arriveriez	arriveraient
			/a.ki.vkɛ/	\arri.nrs\	/a.ki.vkɛ/	/a.ĸi.və.ĸjɔ̃/	/a.ĸi.və.ĸje/	/ari.vrs/

Morphological Inflection

▶ In Spanish:

			singular		plural				
		1st person	2nd person	3rd person	1st person	2nd person	3rd person		
		уо	tú vos	él/ella/ello usted	nosotros nosotras	vosotros vosotras	ellos/ellas ustedes		
	present	llego	llegas ^{tú} llegás ^{vos}	llega	llegamos	llegáis	llegan		
indicative	imperfect	llegaba	llegabas	llegaba	llegábamos	llegabais	llegaban		
	preterite	llegué	llegaste	llegó	llegamos	llegasteis	llegaron		
	future	llegaré	llegarás	llegará	llegaremos	llegaréis	llegarán		
	conditional	llegaría	llegarías	llegaría	llegaríamos	llegaríais	llegarían		

Noun Inflection

Not just verbs either; gender, number, case complicate things

Declension of Kind										
			singular		plural					
	indef.	def.	noun	def.	noun					
nominative	ein	das	Kind	die	Kinder					
genitive	eines	des	Kindes, Kinds	der	Kinder					
dative	einem	dem	Kind, Kinde ¹	den	Kindern					
accusative	ein	das	Kind	die	Kinder					

- Nominative: I/he/she, accusative: me/him/her, genitive: mine/his/hers
- ▶ Dative: merged with accusative in English, shows recipient of something
 I taught the children <=> Ich unterrichte die Kinder
 I give the children a book <=> Ich gebe den Kindern ein Buch

Irregular Inflection

- ▶ Common words are often irregular
 - ▶ I am / you are / she is
 - ▶ Je suis / tu es / elle est
 - Soy / está / es
- ▶ Less common words typically fall into some regular *paradigm* these are somewhat predictable

▶ Many possible forms — and in newswire data, only a few are observed

Morphologically-Rich Languages

- Many languages spoken all over the world have much richer morphology than English
- ➤ CoNLL 2006 / 2007: dependency parsing + morphological analyses for ~15 mostly Indo-European languages
- ▶ SPMRL shared tasks (2013-2014): Syntactic Parsing of Morphologically-Rich Languages
- Word piece / byte-pair encoding models for MT are pretty good at handling these if there's enough data

Morphologically-Rich Languages

Great resources for challenging your assumptions about language and for understanding multilingual models!

Morphological Analysis/Inflection

Morphological Analysis

- ▶ In English, lexical features on words and word vectors are pretty effective
- ▶ In other languages, **lots** more unseen words due to rich morphology! Affects parsing, translation, ...
- ▶ When we're building systems, we probably want to know base form + morphological features explicitly
- ▶ How to do this kind of morphological analysis?

Morphological Analysis

- Given a word in context, need to predict what its morphological features are
- ▶ Basic approach: combines two modules:
 - Lexicon: tells you what possibilities are for the word
 - ▶ Analyzer: statistical model that disambiguates
- ▶ Models are largely CRF-like: score morphological features in context
- ▶ Lots of work on Arabic inflection (high amounts of ambiguity)

Morphological Inflection

- Machine translation where phrase table is defined in terms of lemmas
- "Translate-and-inflect": translate into uninflected words and predict inflection based on source side

Chahuneau et al. (2013)

Chinese Word Segmentation

- Word segmentation: some languages including Chinese are totally untokenized
- LSTMs over character embeddings / character bigram embeddings to predict word boundaries
- Having the right segmentation can help machine translation

冬天 (winter), 能 (can) 穿 (wear) 多少 (amount) 穿 (wear) 多少 (amount); 夏天 (summer), 能 (can) 穿 (wear) 多 (more) 少 (little) 穿 (wear) 多 (more) 少 (little)。

Without the word "夏天 (summer)" or "冬天 (winter)", it is difficult to segment the phrase "能 穿多少穿多少".

- separating nouns and pre-modifying adjectives: 高血压 (high blood pressure)
 → 高(high) 血压(blood pressure)
- separating compound nouns:
 内政部 (Department of Internal Affairs)
 → 内政(Internal Affairs) 部(Department).

Chen et al. (2015)

Cross-Lingual Tagging and Parsing

Cross-Lingual Parsing

	best	-source	avg-source	gold	I-POS	pred-POS		
	source gold-POS		gold-POS	multi-dir.	multi-proj.	multi-dir.	multi-proj.	
da	it	48.6	46.3	48.9	49.5	46.2	47.5	
de	nl	55.8	48.9	56.7	56.6	51.7	52.0	
el	en	63.9	51.7	60.1	65.1	58.5	63.0	
es	it	68.4	53.2	64.2	64.5	55.6	56.5	
it	pt	69.1	58.5	64.1	65.0	56.8	58.9	
nl	el	62.1	49.9	55.8	65.7	54.3	64.4	
pt	it	74.8	61.6	74.0	.0 75.6	67.7	70.3	
sv	pt	66.8	54.8	65.3	68.0	58.3	62.1	
avg		63.7	51.6	61.1	63.8	56.1	59.3	

- ▶ Multi-dir: transfer a parser trained on several source treebanks to the target language
- ► Multi-proj: more complex annotation projection approach

 McDonald et al. (2011)

Cross-Lingual Word Representations

McDonald et al. (2011)

Multilingual Embeddings

 Input: corpora in many languages. Output: embeddings where similar words in different languages have similar embeddings

I have an apple 47 24 18 427

J' ai des oranges 47 24 89 1981 ID: 24 ai have

ID: 47

- multiCluster: use bilingual dictionaries to form clusters of words that are translations of one another, replace corpora with cluster IDs, train "monolingual" embeddings over all these corpora
- Works okay but not all that well

Ammar et al. (2016)

Multilingual Sentence Embeddings

- ▶ Form BPE vocabulary over all corpora (50k merges); will include characters from every script
- Take a bunch of bitexts and train an MT model between a bunch of language pairs with shared parameters, use W as sentence embeddings
 Artetxe et al. (2019)

Multilingual Sentence Embeddings

		EN	$EN \rightarrow XX$													
		EN -	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur
Zero-Shot Transfer, one NLI system for all languages:																
Conneau et al.	X-BiLSTM	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4
(2018b)	X-CBOW	64.5	60.3	60.7	61.0	60.5	60.4	57.8	58.7	57.5	58.8	56.9	58.8	56.3	50.4	52.2
BERT uncased*	Transformer	<u>81.4</u>	-	<u>74.3</u>	70.5	-	-	-	-	62.1	-	-	63.8	-	-	58.3
Proposed method	BiLSTM	73.9	71.9	72.9	72.6	72.8	74.2	72.1	69.7	71.4	72.0	69.2	71.4	65.5	62.2	61.0

Train a system for NLI (entailment/neutral/contradiction of a sentence pair) on English and evaluate on other languages

Artetxe et al. (2019)

Multilingual BERT

- ▶ Take top 104 Wikipedias, train BERT on all of them simultaneously
- What does this look like?

Beethoven may have proposed unsuccessfully to Therese Malfatti, the supposed dedicatee of "Für Elise"; his status as a commoner may again have interfered with those plans.

当人们在马尔法蒂身后发现这部小曲的手稿时,便误认为上面写的是"Für Elise"(即《给爱丽丝》)[51]。

Кита́й (официально — Кита́йская Наро́дная Респу́блика, сокращённо — КНР; кит. трад. 中華人民共和國, упр. 中华人民共和国, пиньинь: Zhōnghuá Rénmín Devlin et al. (2019)

Multilingual BERT: Results

Fine-tuning \ Eval	EN	DE	NL	ES	Fine-tuning \ Eval	EN	DE	ES	IT
EN	90.70	69.74	77.36	73.59	EN	96.82	89.40	85.91	91.60
DE	73.83	82.00	76.25	70.03	DE	83.99	93.99	86.32	88.39
NL	65.46	65.68	89.86	72.10	ES	81.64	88.87	96.71	93.71
ES	65.38	59.40	64.39	87.18	IT	86.79	87.82	91.28	98.11

Table 1: NER F1 results on the CoNLL data.

Table 2: Pos accuracy on a subset of UD languages.

- ▶ Can transfer BERT directly across languages with some success
- ...but this evaluation is on languages that all share an alphabet

Pires et al. (2019)

Multilingual BERT: Results

	HI	UR		EN	BG	JA
HI	97.1	85.9	EN	96.8	87.1	49.4
UR	91.1	93.8	BG	82.2	98.9	51.6
			JA	57.4	67.2	96.5

Table 4: POS accuracy on the UD test set for languages with different scripts. Row=fine-tuning, column=eval.

- Urdu (Arabic script) => Hindi (Devanagari). Transfers well despite different alphabets!
- ▶ Japanese => English: different script and very different syntax

Pires et al. (2019)

Scaling Up: XLM-R

Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

- ▶ Larger "Common Crawl" dataset, better performance than mBERT
- ▶ Low-resource languages benefit from training on other languages
- ▶ High-resource languages see a small performance hit, but not much

Conneau et al. (2019)

Where are we now?

- ▶ Universal dependencies: treebanks (+ tags) for 70+ languages
- Many languages are still small, so projection techniques may still help
- More corpora in other languages, less and less reliance on structured tools like parsers, and pretraining on unlabeled data means that performance on other languages is better than ever
- Multilingual models seem to be working better and better but still many challenges for low-resource settings

Takeaways

- Many languages have richer morphology than English and pose distinct challenges
- ▶ Problems: how to analyze rich morphology, how to generate with it
- ▶ Can leverage resources for English using bitexts
- ▶ Next time: wrapup + discussion of ethics