

Announcements

- Check-in returned
- ► A5 back soon
- eCIS evaluations: please fill these out, attach a screenshot to your final project submission
- Final projects due December 9

Today

- Interpreting neural networks: what does this mean and why should we care?
- Local explanations: erasure techniques
- Gradient-based methods
- Evaluating explanations

Interpreting Neural Networks

Interpreting Neural Networks

- Neural models have complex behavior. How can we understand them?
- QA: why did the model prefer Stewart over Devin Funchess?

QID: 1f4b668a0343453b9d4bf3edc86daf63

Question: who caught a 16-yard pass on this drive?

Answer: devin funchess

Start Distribution

there would be no more scoring in the third quarter , but early in the fourth , the broncos drove to the panthers 41-yard line . on the next play , ealy knocked the ball out of manning 's hand as he was winding up for a pass , and then recovered it for carolina on the 50-yard line . a 16-yard reception by devin funchess and a 12-yard run by stewart then set up gano 's 39-yard field goal , cutting the panthers deficit to one score at $16\hat{a} \in 10$. the next three drives of the game would end in punts .

Interpreting Neural Networks

Neural models have complex behavior. How can we understand them?

DAN

Ground Truth

Sentiment:

this movie was not good negative negative this movie was good positive positive this movie was bad negative negative the movie was not bad negative positive

- Left side: predictions model makes on individual words
- ▶ Tells us how these words combine
- How do we know why a neural network model made the prediction it made?

Why explanations?

- ▶ **Trust:** if we see that models are behaving in human-like ways and making human-like mistakes, we might be more likely to trust them and deploy them
- ▶ Causality: if our classifier predicts class y because of input feature x, does that tell us that x causes y? Not necessarily, but it might be helpful to know
- ▶ Informativeness: more information may be useful (e.g., predicting a disease diagnosis isn't that useful without knowing more about the patient's situation)
- ▶ Fairness: ensure that predictions are non-discriminatory

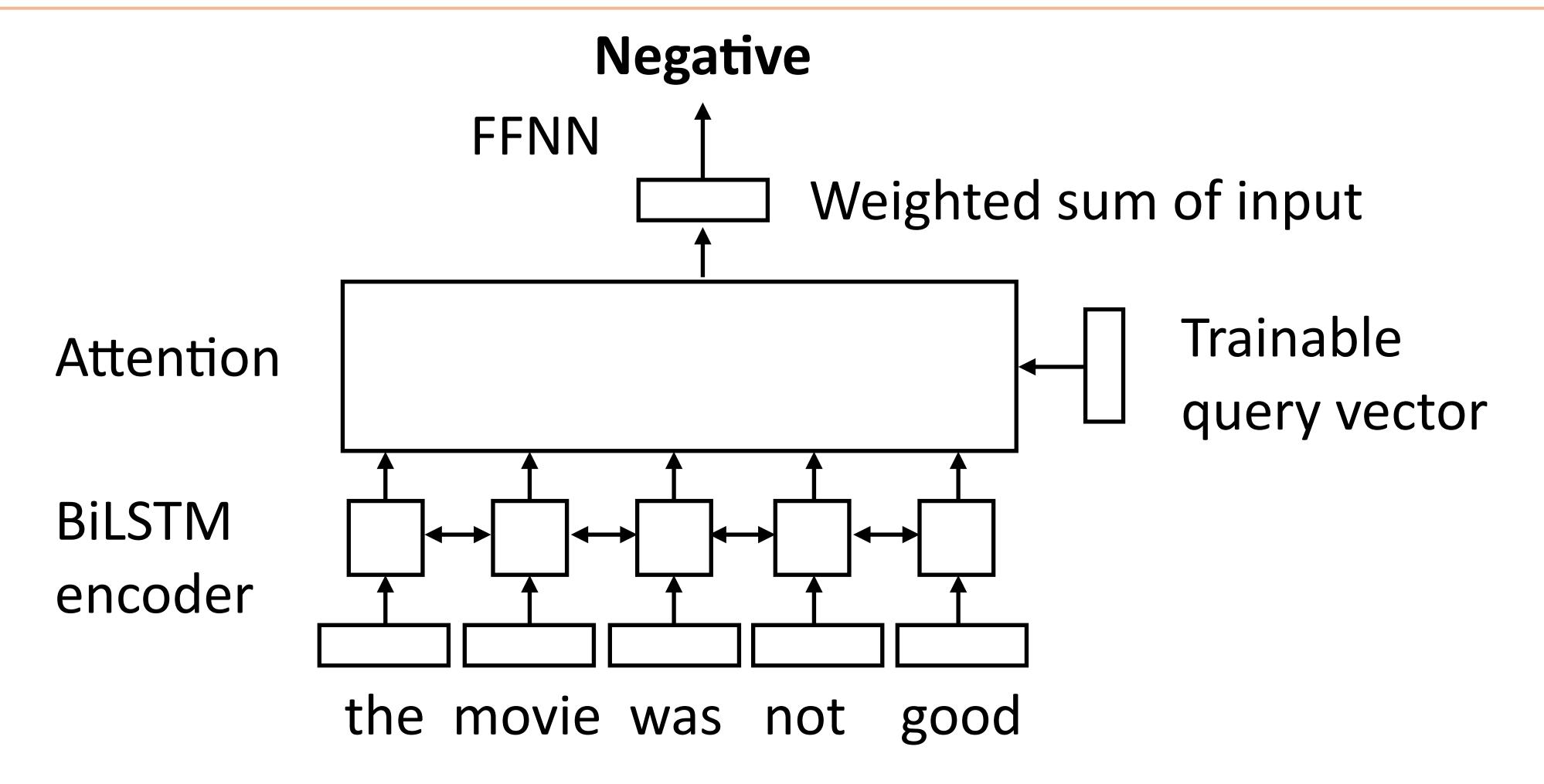
Why explanations?

- ▶ Some models are naturally **transparent**: we can understand why they do what they do (e.g., a decision tree with <10 nodes)
- Explanations of more complex models
 - ▶ Local explanations: highlight what led to this classification decision. (Counterfactual: if these features were different, the model would've predicted a different class) focus of this lecture
 - ▶ Text explanations: describe the model's behavior in language
 - ▶ Model probing: auxiliary tasks, challenge sets, adversarial examples to understand more about how our model works

Local Explanations

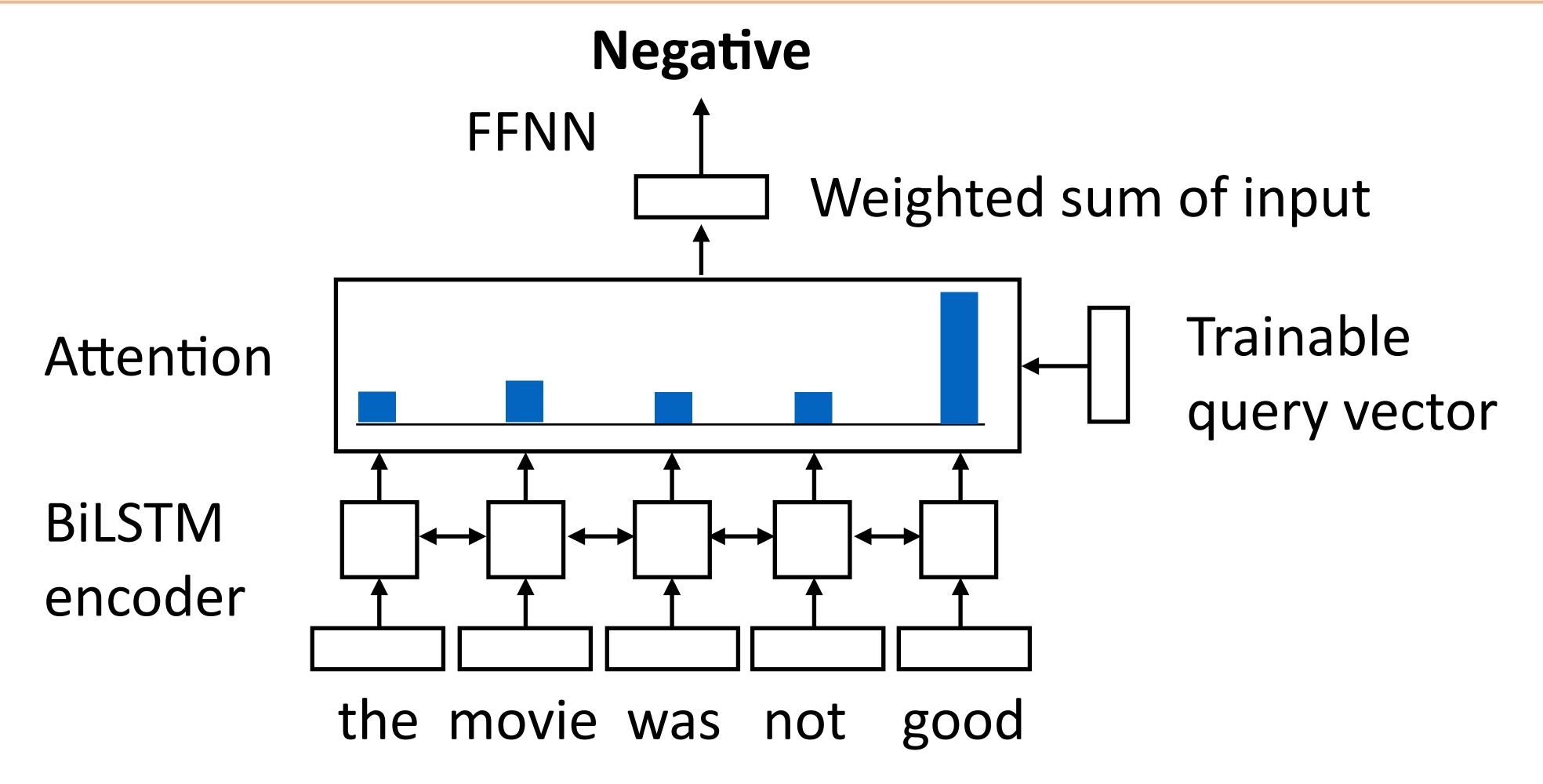
(which parts of the input were responsible for the model's prediction on this particular data point?)

Sentiment Analysis with Attention



Similar to a DAN model, but (1) extra BiLSTM layer; (2) attention layer instead of just a sum

Attention Analysis



- ▶ Attention places most mass on *good* did the model ignore *not*?
- ▶ What if we removed *not* from the input?

Local Explanations

An explanation could help us answer counterfactual questions: if the input were x' instead of x, what would the output be?

```
that movie was not great , in fact it was terrible ! —

that movie was not _____ , in fact it was terrible ! —

that movie was ____ great , in fact it was ____ ! +
```

Attention can't necessarily help us answer this!

Erasure Method

▶ Delete each word one by and one and see how prediction prob changes

that movie was not great, in fact it was terrible!	prob = 0.97
movie was not great , in fact it was terrible !	prob = 0.97
that was not great, in fact it was terrible!	- prob = 0.98
that movienot great, in fact it was terrible!	- prob = 0.97
that movie was great, in fact it was terrible!	-prob=0.8
that movie was not, in fact it was terrible!	- prob = 0.99

Erasure Method

Output: highlights of the input based on how strongly each word affects the output

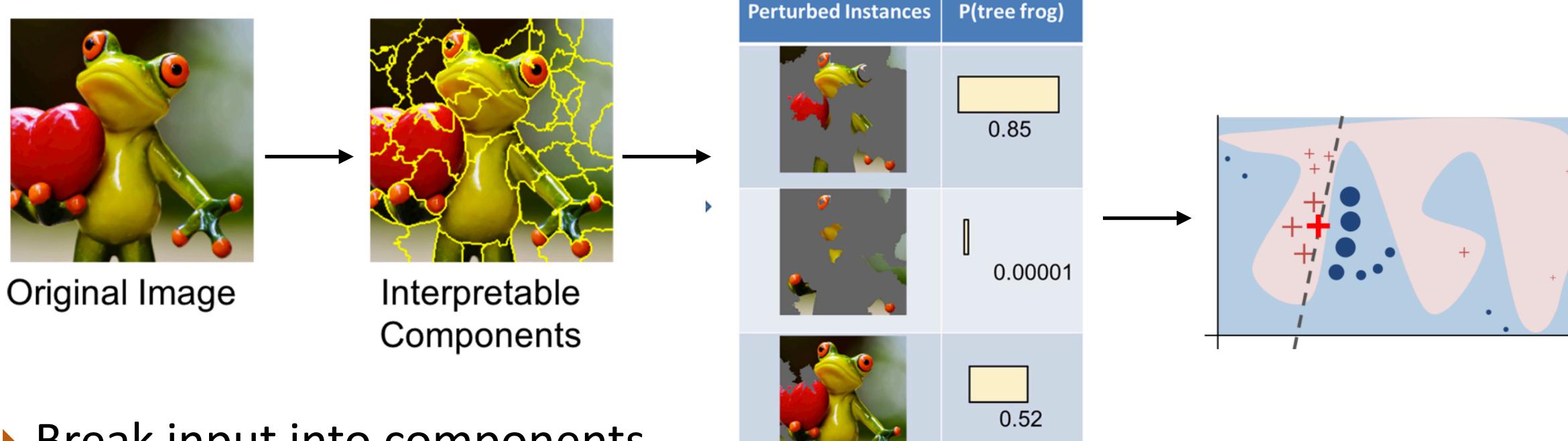
that movie was not great, in fact it was terrible!

- not contributed to predicting the negative class (removing it made it less negative), great contributed to predicting the positive class (removing it made it more negative)
- Will this work well?
 - Inputs are now unnatural, model may behave in "weird" ways
 - ▶ Saturation: if there are two features that each contribute to negative predictions, removing each one individually may not do much

LIME

- Locally-interpretable, model-agnostic explanations (LIME)
- Similar to erasure method, but we're going to delete collections of things at once
 - Can lead to more realistic input (although people often just delete words with it)
 - More scalable to complex settings

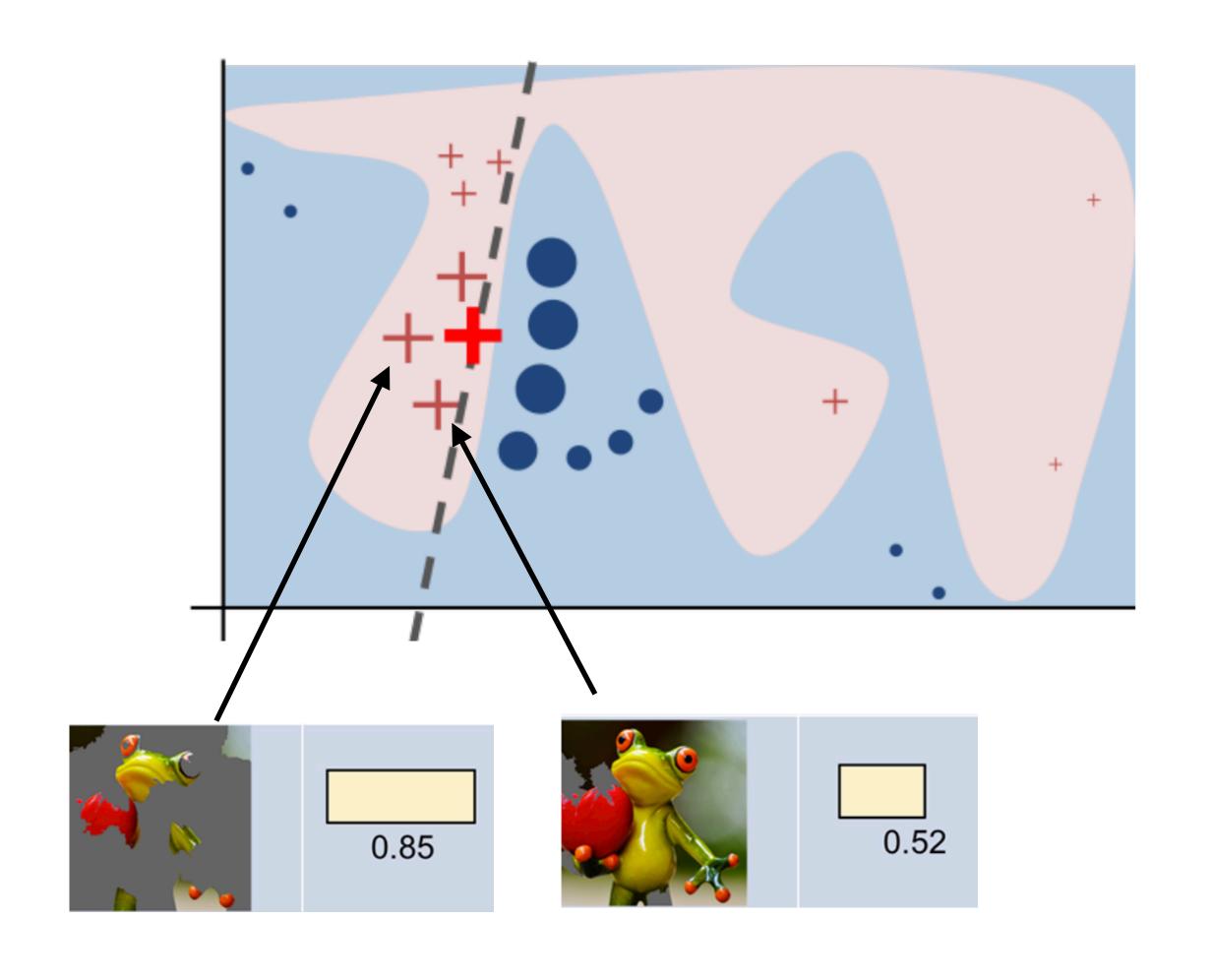
LIME



- Break input into components (for text: could use words, phrases, sentences, ...)
- Check predictions on Now we have model subsets of those
- predictions on perturbed examples

https://www.oreilly.com/learning/introduction-to-localinterpretable-model-agnostic-explanations-lime

LIME (cont'd)



- This is what the model is doing on perturbed examples of the input
- Now we train a classifier to predict the model's behavior based on what subset of the input it sees
- The weights of that classifier tell us which parts of the input are important

LIME (cont'd)

This secondary classifier's weights now give us highlights on the input

The movie is mediocre, maybe even bad.

Negative 99.8%

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

Negative 98.0%

Negative 98.7%

Positive 63.4%

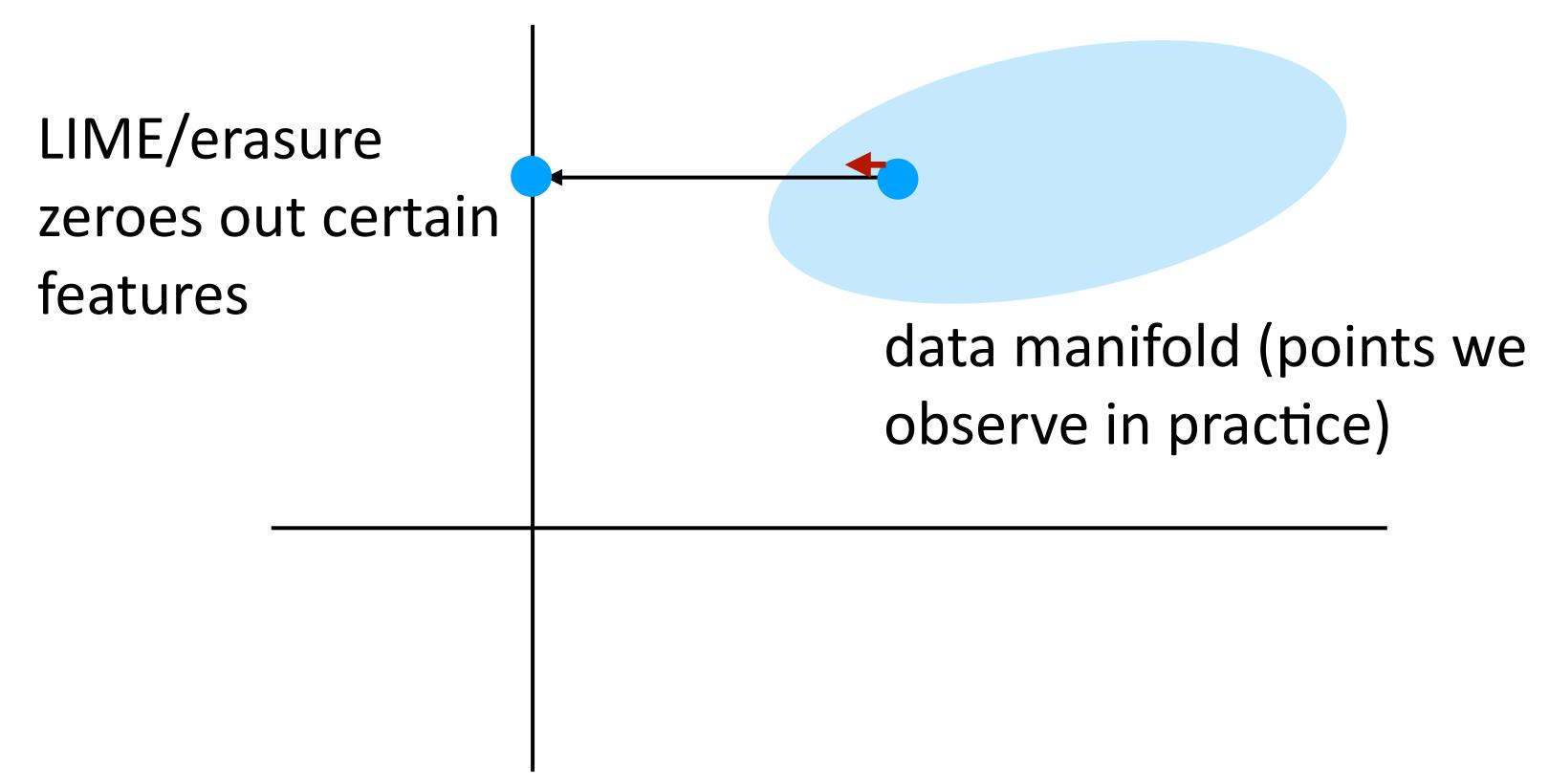
Positive 74.5%

Negative 97.9%

- Lots of moving parts here: what perturbations to use? what model to train? etc.
- Expensive to call the model all these times
- Linear assumption about interactions may not be reliable

Gradient-based Methods

Problem: fully removing pieces of the input may cause it to be very unnatural



Alternative approach: look at what this perturbation does locally right around the data point using gradients

Gradient-based Methods

score = weights * features (or an NN, or whatever)

Learning a model

Compute derivative of score with respect to weights: how can changing weights improve score of correct class?

Gradient-based Explanations

Compute derivative of score with respect to *features*: how can changing *features* improve score of correct class?

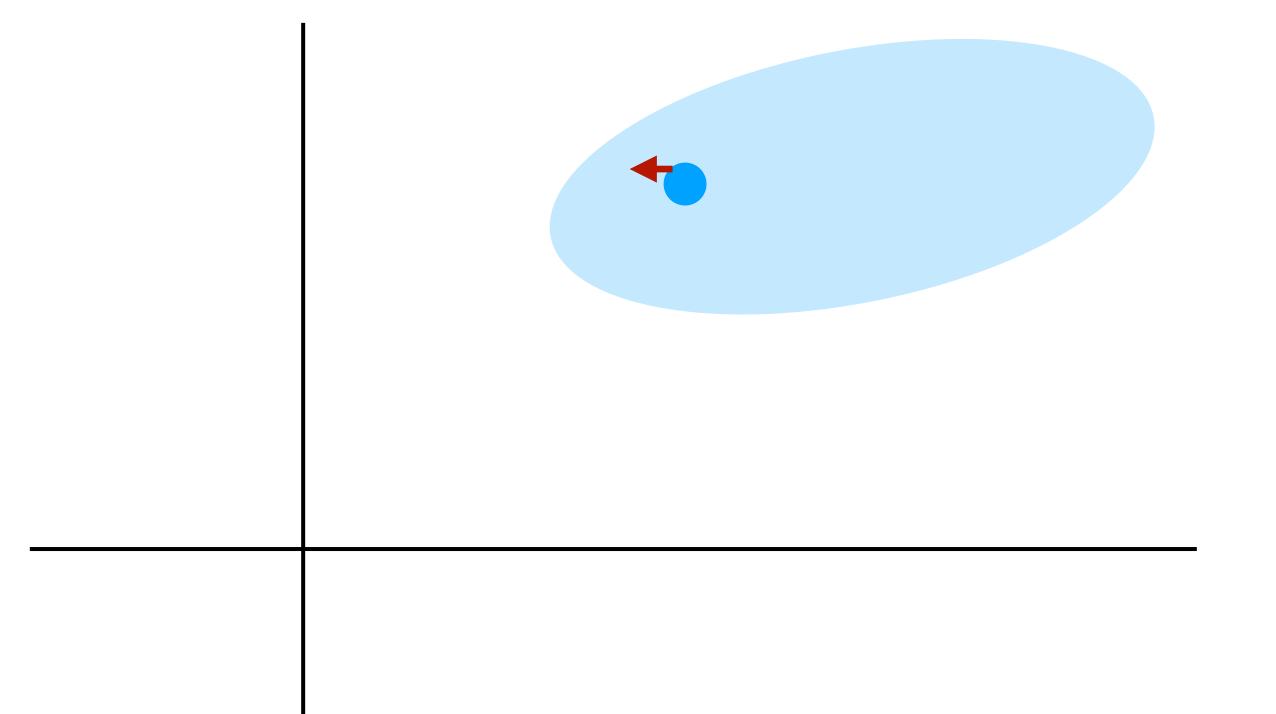
Originally used for images

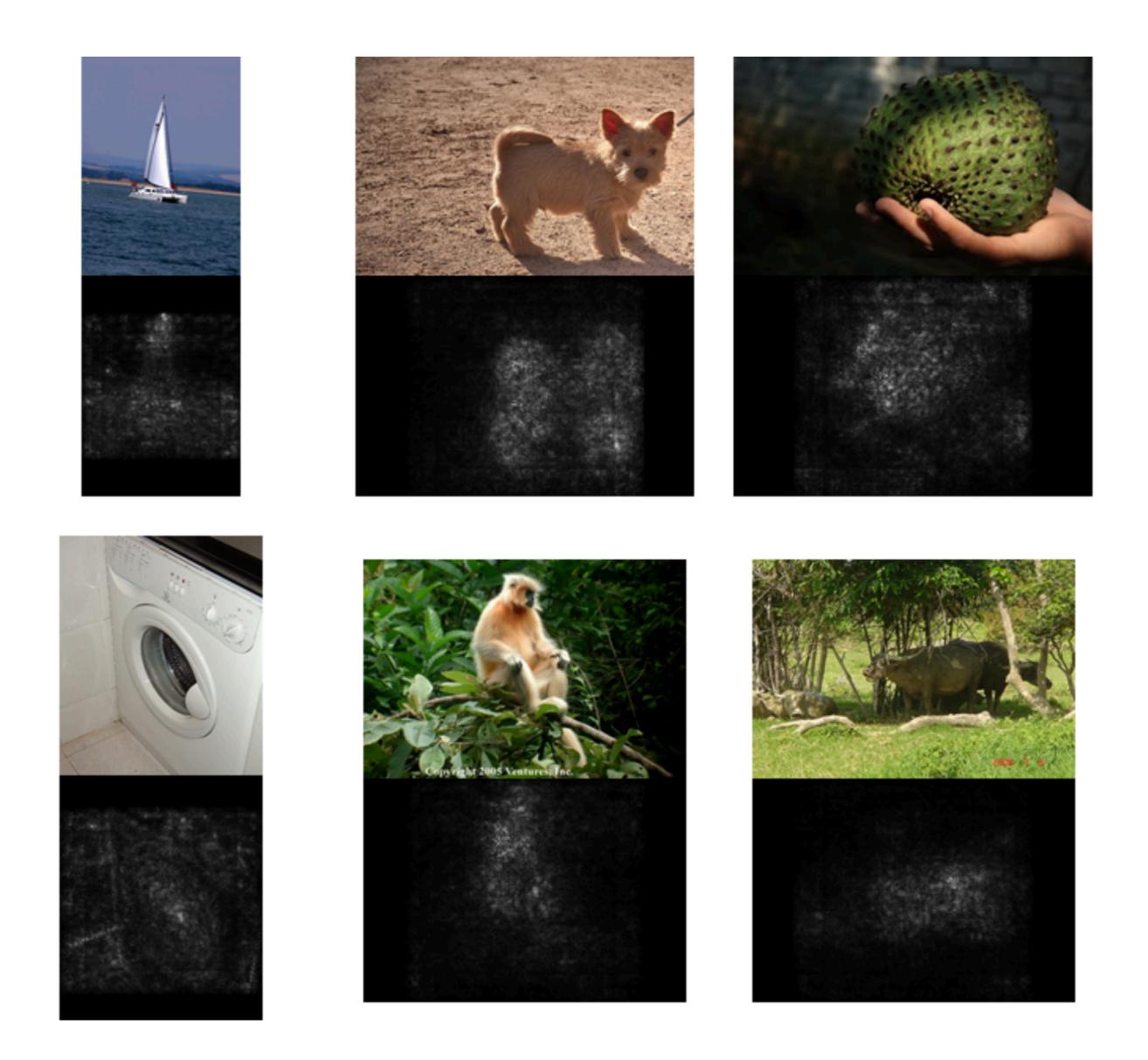
$$S_c$$
 = score of class c

 I_0 = current image

$$w = \left. \frac{\partial S_c}{\partial I} \right|_{I_0}$$

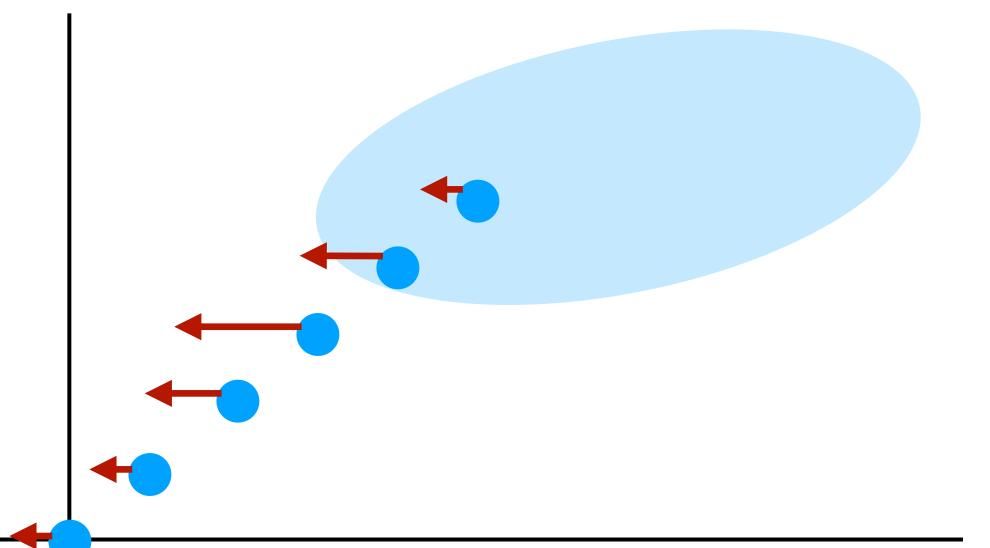
 Higher gradient magnitude = small change in pixels leads to large change in prediction





Simonyan et al. (2013)

- ► Suppose you have prediction = A OR B for features A and B. Changing either feature doesn't change the prediction, but changing both would. Gradient-based method says neither is important
- Integrated gradients: compute gradients along a path from the origin to the current data point, aggregate these to learn feature importance
- Intermediate points can reveal new info about features



Evaluating Explanations

Faithfulness vs. Plausibility

Suppose our model is a bag-of-words model with the following:

```
the = -1, movie = -1, good = +3, bad =0

the movie was good prediction score=+1

the movie was bad prediction score=-2
```

Suppose explanation returned by LIME is:

the movie was **bad**

Is this a "correct" explanation?

Faithfulness vs. Plausibility

Plausible explanation: matches what a human would do

the movie was good the movie was bad

- Maybe useful to explain a task to a human, but it's not what the model is really doing!
- Faithful explanation: actually reflects the behavior of the model

the movie was good

the movie was bad

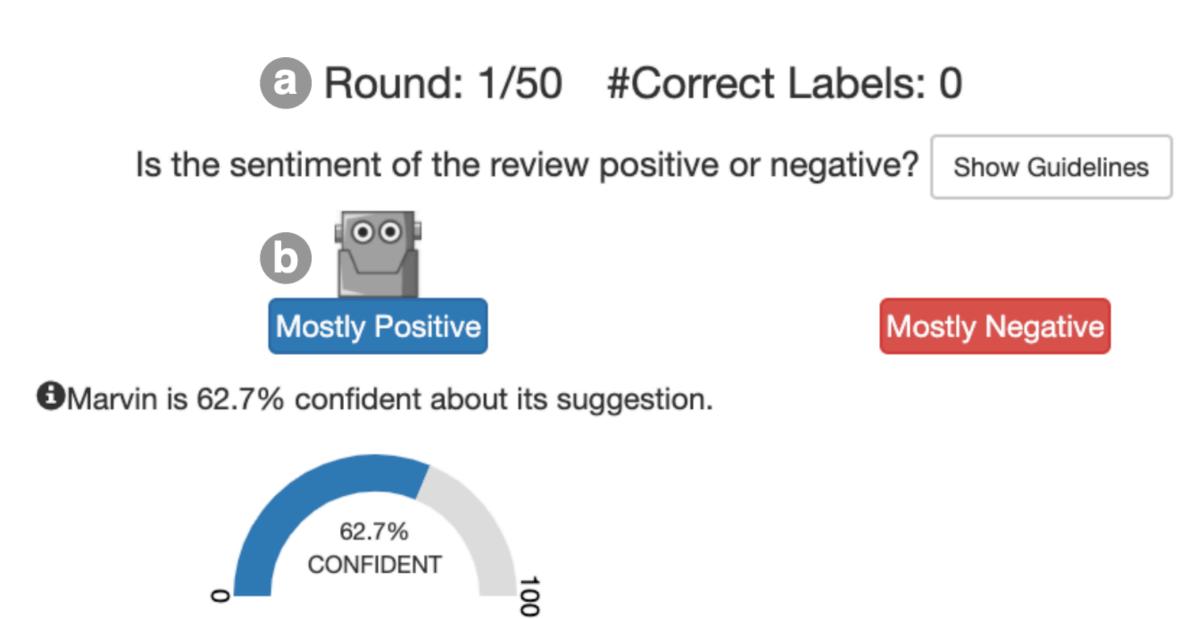
- We usually prefer faithful explanations; non-faithful explanations are actually deceiving us about what our models are doing!
- Rudin: Stop Explaining Black Box Models for High-Stakes Decisions and Use Interpretable Models Instead

Evaluating Explanations

- Nguyen (2018): delete words from the input and see how quickly the model flips its prediction?
 - Downside: not a "real" use case
- ▶ Hase and Bansal (2020): counterfactual simulatability: user should be able to predict what the model would do in another situation
 - Hard to evaluate

Evaluating Explanations

I, like others was very excited to read this book. I thought it would show another side to how the Tate family dealt with the murder of thier daughter Sharon. I didn't have to read much to realize however that the book is was not going to be what I expected. It is full of added dialog and assumptions. It makes it hard to tell where the truth ends and the embellish ments begin. It reads more like fan fiction than a true account of this family's tragedy. I did enjoy looking at the early pic tures of Sharon that I had never seen before but they were hardly worth the price of the book.



- ▶ Human is trying to label the sentiment. The Al provides its prediction to try to help. Does the human-Al team beat human/Al on their own?
- Al provides both an explanation for its prediction (blue) and also a possible counterargument (red)
- Do these explanations help the human? Slightly, but AI is still better
- No positive results on "human-Al teaming" with explanations Bansal et al. (2020)

Packages

► AllenNLP Interpret: https://allennlp.org/interpret

Captum (Facebook): https://captum.ai/

LIT (Google): https://ai.googleblog.com/2020/11/the-language-interpretability-tool-lit.html

Various pros and cons to the different frameworks

Takeaways

- Many other ways to do explanation:
 - Probing tasks: we looked at these for ELMo, do vectors capture information about part-of-speech tags?
 - Diagnostic test sets ("unit tests" for models)
 - Building models that are explicitly interpretable (decision trees)
- Next time: wrapup + discussion of ethics