

Text Classification

A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

Yankees and Mets Are on Opposite Tracks This Subway Series

As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

By FILIP BONDY

---- Health

---- Sports

~20 classes

▶ 20 Newsgroups, Reuters, Yahoo! Answers, ...

Entailment

Three-class task over sentence pairs

Not clear how to do this with simple bag-ofwords features

A soccer game with multiple males playing.

ENTAILS

Some men are playing a sport.

A black race car starts up in front of a crowd of people.

CONTRADICTS

A man is driving down a lonely road

A smiling costumed woman is holding an umbrella.

NEUTRAL

A happy woman in a fairy costume holds an umbrella.

Authorship Attribution

- Statistical methods date back to 1930s and 1940s
 - Based on handcrafted heuristics like stopword frequencies
 - ▶ Early work: Shakespeare's plays, Federalist papers (Hamilton v. Madison)
- ▶ Twitter: given a bunch of tweets, can we figure out who wrote them?
 - Schwartz et al. EMNLP 2013: 500M tweets, take 1000 users with at least 1000 tweets each
- ▶ Task: given a held-out tweet by one of the 1000 authors, who wrote it?

Authorship Attribution

- SVM with character 4-grams, words2-grams through 5-grams
- ▶ 1000 authors, 200 tweets per author => 30% accuracy
- ▶ 50 authors, 200 tweets per author=> 71.2% accuracy

Authorship Attribution

▶ k-signature: n-gram that appears in k% of the authors tweets but not appearing for anyone else — suggests why these are so effective

Signature Type	10%-signature	Examples
Character n-grams	6 ^ ^ ^ · _	REF oh ok ^_^ Glad you found it!
		Hope everyone is having a good afternoon
		REF Smirnoff lol keeping the goose in the freezer
	'yew'	gurl yew serving me tea nooch
		REF about wen yew and ronnie see each other
		REF lol so yew goin to check out tini's tonight huh???

Neural Networks

$$\mathbf{z} = g(Vf(\mathbf{x}) + \mathbf{b})$$
Nonlinear Warp Shift transformation space

$$y_{\text{pred}} = \operatorname{argmax}_y \mathbf{w}_y^{\top} \mathbf{z}$$

▶ Ignore shift / +b term for the rest of the course

Neural Networks

Linear classifier

Neural network

Linear classification in the transformed space!

Deep Neural Networks

$$\mathbf{z}_1 = g(V_1 f(\mathbf{x}))$$

$$\mathbf{z}_2 = g(V_2 \mathbf{z}_1)$$

. . .

$$y_{\text{pred}} = \operatorname{argmax}_{y} \mathbf{w}_{y}^{\top} \mathbf{z}_{n}$$

