
CS 378 Lecture 9

Sequence Tagging : classifiers, HMM,

Today
Tusing classifiers for sequence labeling
- Hidden Markov Models
- Parameter estimation
- ( if time ) inference
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Tagging with Classifiers
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New feature vector : f- (I, i)
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Look at context words
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the POS tag occurs in
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Problem w/ POS as classification
-

VBZ -1 ✓Bp present tense
verbs

Fed raises interest rates

we never have these two lugs
in a sequence like this

If our classifier makes a mistake
,

sequence of tags makes no sense

constraint : no VBZ - VBP

Build this into model

Hidden Markov Models : model the
entire sequence of tags

Generative : HUMS
Discriminative sq

. models :
conditioned

random fields (CRF's)
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Hidden Markov Models
-

Tags yi E T , X : E V words

tags
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draw tag Yi based on Yi - I
word Xi based on tag Yi
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why called HMM ? y 's form a

Markov process : y ; is independent
of y , . . . Yin conditioned on yiy



Goals

① Inference : arg'Ea× Pty II)
② Estimation : labeled data (Icily "')
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② Other seas

they they can they fish they fish gas
.

③ other tugs : no
,
all zero prob

Estimating Parameters
-

Maximize lay likelihood of observed data

Data :
N V two labeled seats

they can what params make
N V these sent look

they fish lively ?



/,
maximum likelihood estimation

MLE by counting + normalizing
when you have categorical distributing
( coin with n sides ) and you see
in trials

, prob of each outcome

is just count (outcome)
-

coin ( tht)
Count (trials)

HHHT ⇒ prob of 11=319

xxim=f÷÷÷÷÷!⇒÷112
⇒ exactly the emissions we saw
before

Transitions were smoothed a pretended
we saw every event w/count l
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