
CS378 Lecture Note: Viterbi Algorithm

The Viterbi algorithm is an algorithm for performing inference in Hidden Markov Models. A Hidden
Markov Model is defined by

P (y,x) = PS(y1)PE(x1|y1)

[
n∏

i=2

PT (yi|yi−1)PE(xi|yi)

]
PT (STOP|yn) (1)

(although note that there are other ways to write this formula). We want to compute argmaxy P (y|x), the

most likely tag sequence given some input words x. This is equivalent to computing argmaxy
P (y,x)
P (x) =

argmaxy P (y,x), due to Bayes’ rule and the fact that the ensuing denominator does not depend on y.
Let U denote the set of tags (to avoid collision with T defined above) and let n be the length of a sentence

under consideration. Assume that tags and words are both indexed, so that both words and tags can be
represented as integers. The set of tags should contain a STOP token. When doing English tagging, correctly
accounting for STOP at the end doesn’t actually change the results that much since most sentences end in
punctuation; however, it’s necessary to make the model a correct probabilistic model (sums to 1 over all
possible tagged sequences).

Model Viterbi requires the model parameters as input, which are typically estimated from training data.

1. Initial (start) probabilities: logPS(y1 = i). These can be stored in a vector S[i].

2. Transition probabilities: logPT (y = j|yprev = i). These can be stored in a matrix T [i, j].

3. Emission probabilities: logPE(x = j|y = i). These can be stored in a matrix E[i, j].

Algorithm The Viterbi algorithm is a dynamic programming approach to computing the highest scoring
path. At its core is an n× |U | − 1 matrix v, where the matrix excludes the STOP state. v[i, y] stores the log
probability so far of the highest probability path ending in y at state i.

We’re now ready to describe the algorithm (see next page):

1

Algorithm 1 Viterbi Algorithm

1: function VITERBI(x, S, T,E) . x: sentence of length n, S: initial log probs, T : transition log probs,
E: emission log probs

2: Initialize v, a n× |U | − 1 matrix
3: for y = 1 to |U | − 1 do . Handle the initial state
4: v[1, y] = S[y] + E[y, x1]
5: end for
6: for i = 2 to n do
7: for y = 1 to |U | − 1 do
8: v[i, y] = E[y, xi] + maxyprev

(
T [yprev, y] + v[i− 1, yprev]

)
9: end for

10: end for
11: for y = 1 to |U | − 1 do . Handle the final state
12: v[n, y] = v[n, y] + T [y,STOP]
13: end for
14: Best final state = argmaxy v[n, y]
15: To reconstruct the answer: track argmaxes as well (where the max element values come from) and

walk backwards to find the sequence
16: end function

For further reference, Wikipedia has a similar implementation,1 but not in log space. That is, rather than
adding up log probabilities, they multiply probabilities, which is riskier numerically due to the possibility
of underflow errors.

Debugging Viterbi The main property of Viterbi that’s helpful for debugging is that maxy v[n, y] should
contain the log probability of the highest-scoring tag sequence for the sentence. For a short example (less
than 4 words), you can explicitly compute this by just looping through all possible tag sequences with nested
for loops and computing the score of each using the definition of an HMM. Assuming you write this scoring
code correctly, you can double-check that your dynamic program returns the same answer as the explicit
computation.

Variants The critical operations in the above algorithm are the + operations (to combine log probability
values) and the max operations

1. max, +: Viterbi algorithm in log space, as shown above (expects log-probability matrices as input)

2. max, ×: Viterbi algorithm in real space (expects probability matrices as input)

3. +,×: sum-product algorithm (also called the forward algorithm) in real space. Can be used to compute
P (x) =

∑
y P (x,y). Can be combined with a version of this algorithm called the backward algorithm

to compute P (yi|x) for each position i in the sentence. This is outside the scope of this course, but is
discussed more in the textbook.

4. log-sum, +: sum-product algorithm in log space. log-sum(a, b) = log(exp(a) + exp(b)); that is, it
takes two log-probabilities, turns them into probabilities, adds them together, and re-logs them. There
is no other way to “add” log probabilities correctly.

1https://en.wikipedia.org/wiki/Viterbi algorithm

2

