
Midterm for CS378: Natural Language Processing (Fall 2020)

Instructions:

• The exam is due at 5pm CST on Friday, October 16. Leave yourself ample time to upload it.

• The first thing you do should be to read and sign the honor code. You will upload this with your
exam. This exam is to be completed individually be each student. Again, you may not collaborate
with other students! If we find out that you have done so, that will be considered a violation of the
course Academic Honesty policy.

• This exam is an open book take-home exam. You are allowed to consult any resources that are
helpful, with the exception of other people.

• Partial credit will be given for short-answer and long-answer questions, so please show work in your
answers, but avoid writing essays. You might be penalized for writing too much if it’s incorrect.

• For short-answer and long-answer questions, please box or circle your final answer unless it is an
explanation.

• You will scan and upload your exam into Gradescope. You may type your responses, handwrite
responses on a printed exam, or a mix of both. If you type your responses, please try to keep the
layout of your pages matching the exam to make our grading easier (e.g., put the answers to the first
four multiple choice questions on a single page).

• If you have questions during the exam, please use a private Piazza post or directly email the course
staff. Important clarifications will be posted as Canvas announcements.

Grading Sheet (for instructor use only)

Question Points Score

1 10

2 18

3 14

4 14

5 14

6 14

7 17

Total: 101

Name:

CS378 Midterm Fall 2020 Name:

Honor Code (adapted from Dr. Elaine Rich)

The University and the Department are committed to preserving the reputation of your degree. In order to
guarantee that every degree means what it says it means, we must enforce a strict policy that guarantees that
the work that you turn in is your own and that the grades you receive measure your personal achievements
in your classes:

By turning in this exam with your name on it, you are certifying that this is yours and yours alone. You
are responsible for complying with this policy in two ways:

1. You must not turn in work that is not yours or work which constitutes any sort of collaborative effort
with other students.

2. You must take all reasonable precautions to prevent your work from being stolen. It is important that
you do nothing that would enable someone else to turn in work that is not theirs.

The penalty for academic dishonesty will be a course grade of F and a referral of the case to the
Dean of Students Office. Further penalties, including suspension or expulsion from the University
may be imposed by that office.

Please sign below to indicate that you have read and understood this honor code. If submitting electron-
ically, you can submit any page with a text version of the honor code and a scanned or drawn signature.

Signature:

Page 2

CS378 Midterm Fall 2020 Name:

Part 1: Multiple Choice (10 points)

1. (10 points) Answer these questions by writing the answer in the provided blank (2 points each).

C (1) What is the big-O runtime of a single forward pass through a Deep Averaging Network? The
size of the hidden layer is D, the number of words is S, the size of the embedding space is E, and the
number of classes is K.

A. O(S + ED +K)
B. O(SEDK)
C. O(SE + ED +DK)
D. O(D + S)
E. None of the above

I (2) Suppose you remove the nonlinearity from our standard FFNN and replace it with the identity
function. Circle or list all that apply (there may be multiple correct choices):
I. Any model represented by this neural network can be represented with a multiclass logistic regression
model.
II. The model is no longer mathematically well-defined (i.e., your code would crash if you ran it).
III. The model will need a higher learning rate to train effectively.

E (3) Assume you are implementing a simplified DAN with a single weight matrix W =
[
a 0
0 b

]
and

no hidden layer. That is, your model is P (y|x) = softmax(W (
∑n

i=1E(xi))), where E(xi) is the word
embedding of the ith word. Suppose y = 0 means negative and y = 1 means positive.

You have two training sentences: cats and dogs with negative sentiment and dogs and dogs and dogs
with positive sentiment. Find the values of a and b such that this training set is fit nearly perfectly by
the DAN model (i.e., it fits the training data with negative log likelihood less than 0.01). Assume the
network has a single layer and a softmax layer at the end.

cats =
[
0.3
0.6

]
and =

[
−0.4
0.1

]
dogs =

[
0.1
−0.7

]

A. [a = −100 , b = 100]
B. [a = 100 , b = −100]
C. [a = −100 , b = −100]
D. [a = 100 , b = 100]
E. None of the above

III, IV, V (4) Which of the following statements about dependency parses is correct? Circle or list all
that apply. Furthermore, do not count ROOT as a word.
I. Every word has at least one child
II. Every word has at most one child
III. Every word has at least one parent
IV. Every word has exactly one parent
V. ROOT has exactly one child

Page 3

CS378 Midterm Fall 2020 Name:

I, III (5) Consider the skip-gram model

P (context = y|word = x) =
exp(vx · cy)∑
y′ exp(vx · cy′)

Recall that the choice of which (context, word) pairs to train on is governed by a window size parameter
k, which controls how far from a word we look to gather context. Circle or list all that apply:

I. If we’re building a neural network classifier for POS tagging, a smaller window size parameter (k < 4)
will work better.
II. If we’re building a neural network classifier for POS tagging, a larger window size parameter (k ≥ 4)
will work better.
III. Skip-gram takes longer to train with a larger window size parameter.
IV. Using a larger window size will cause our vocabulary to be larger.
V. A larger window size will usually work better if the dimension of the skip-gram vectors is larger.

Part 2: Short Answer (18 points)

2. (18 points) Answer the following short-answer questions.

a. (4 points) Suppose you are doing authorship attribution with a multi-class bag-of-words classifier:
you have a training set of documents written by several authors, and a test set consisting of a few
documents whose authorship you’re unsure of. Authorship attribution relies on distributions of function
words, particularly the relative frequencies of common function words in text.

Given this application, say for each type of preprocessing whether this should improve performance,
worsen performance, or make no difference, and write a one-sentence justification of your answer.

(1) lowercasing
Although the intended answer was that lowercasing would help, we ended up accepting any well-
justified answer for this. It may help because it helps canonicalize across function words. It may
hurt if capitalization is a major part of an author’s style, or if it erases information about specific ways
of starting a sentence. It likely makes little difference in general.

(2) removing stopwords
Worsen, stylometry relies on these words

(3) applying tf-idf weighting to the words
Worsen, stylometry relies on common words and this will downweight them

Page 4

CS378 Midterm Fall 2020 Name:

(4) applying tokenization
We would typically expect this to improve performance. However, if your justification for another
answer was good, we accepted that answer too. You could argue that this is unlikely to make much
difference, or that certain word-punctuation pairs may actually be useful features for this task.

b. (3 points) For part-of-speech tagging in Assignment 3, you were given smoothed emission probabili-
ties that incorporated pseudo-counts: assume we saw every word with every POS tag α times for some
very small fractional value of α. But smoothing all of the tags’ emission distributions might not be the
best assumption. If you were to only apply smoothing to some of the tags, which type of tag is more
important to smooth: open-class or closed-class? Justify your answer.

Open-class tags are best to smooth. Closed-class tags should have enough observations of the words
they occur with to learn the distribution without smoothing, and allocating probability mass to rare
words having closed-class tags is not a good assumption.

c. (2 points) Name one of the ways in which the Adam optimizer improves over SGD, and state in your
own words why this helps optimization of deep networks.

The per-feature learning rate helps balance across layers. Momentum smooths gradient updates and
prevents “zigzagging” during optimization. Other answers were accepted as well.

d. (3 points) List three applications you can think of where you could use the bag-of-words classification
model from Assignment 1, assuming you retrain this model on new data. Do not include sentiment
analysis.

Many great and creative answers! Authorship attribution, spam classification, classifying political party
alignment of tweets, subjectivity classification, and others were accepted. Note that this should be
restricted to binary classifiers only. However, we gave you the benefit of the doubt if it was unclear, as
most multi-class tasks could have binary formulations as well (e.g., authorship attribution where you’re
trying to decide if text was written by an author or not written by that author).

Page 5

CS378 Midterm Fall 2020 Name:

e. (3 points) Your pet ferret walks across your keyboard while you’re working on Assignment 1 and
adds a call to shuffle the words in each input sentence before its features are extracted, but after
tokenization and other preprocessing. This applies to both training and test time. Recall the three
question parts: Q1 (unigram perceptron), Q5 (unigram LR), and Q7 (bigrams). Which of these question
parts will have their results impacted by the code change?

Q7 changes, no others do. Shuffling doesn’t change the set of unigrams, but it does change bigrams.

f. (3 points) Your ferret is at it again and somehow deleted a random 50% of the words in the Assignment
1 training data; the test data is unchanged. Do you expect the model’s performance to increase, stay the
same, decrease slightly, or decrease significantly? Justify your answer.

Decrease slightly. For one thing, this is what happens if you actually do it (we tried). This is similar to
dropout in neural networks, and losing half of each training sentence just isn’t that impactful. A word
like bad will still appear in enough sentences to learn a good weight for it. Another way of thinking
about it is that typically in machine learning, removing half of the training examples usually only has a
slight negative impact on performance (a few percent).

Page 6

CS378 Midterm Fall 2020 Name:

Part 3: Long Answer (72 points)

3. (14 points) Consider the problem of trying to automatically take words in a tweet and merge them into
a hashtag: for example, instead of tweeting going to SXSW2019, you might tweet going to #SXSW2019
to use the event’s hashtag. We are going to approach this as a BIO tagging problem.

Let x = (x1, . . . , xn) be the sequence of words in the tweet. Let y = (y1, . . . , yn) be the sequence of
BIO labels. Here are some examples of what this looks like:

O O O B I O O O O
gonna go watch Infinity War with the crew tonight
O O O O B O O O
Just got back from SXSW2019 and loved it

O O O O O O O O O O B I I I
After watching that football game I can tell you that Texas is not back

A multi-word hashtag would be merged for the final tweet (e.g., #InfinityWar). Also, this task is only
about detecting which existing words could be merged into a hashtag, not adding new hashtags to a
tweet or changing the wording to conform to existing hashtags.

Page 7

CS378 Midterm Fall 2020 Name:

a. (6 points) First consider a simplified form of the task where we are only trying to detect single-word
hashtags like SXSW2020. Imagine that the data is postprocessed so that only the single-B labels remain,
and all B-I... sequences are just set to O (e.g., Infinity War is no longer detected).

Suppose we try to do this with a binary classifier, and we are running the classifier over the jth word in
the input sentence. Write a piece of pseudocode that extracts indicator or count-based features from the
input using three feature templates (that is, do not use skip-gram or neural networks for this question
part). For example, the Assignment 1 features could be written as:

for i=1 to n:
add_feature("Unigram=" + x[i])

and this would count as one feature template. (Reminder that n is the length of the sentence.)

Give your three feature templates and give a one-sentence justification for why each is useful.

What’s needed here are position-sensitive features. For example,
add feature("CurrWord=" + x[j]),
add feature("PrevWord=" + x[j-1]),
add feature("NextWord=" + x[j+1]),
add feature("CurrWordCapitalized=" + is cap(x[j])),
add feature("CurrWordContainsDigits=" + contains digits(x[j])"), and other
such features.

The question was a bit tricky in that for looping over the input is actually the wrong thing to do. You are
classifying just the jth token. Bag-of-words features as in A1 are not appropriate here and you should
not be looping over all words and extracting CurrWord for each one or anything like that. You also
should not be referencing BIO tags. You’re trying to predict these tags, so using tags in the context
is generally not something that’s possible (perhaps if you specified that you’re running the classifier
sequentially in the forward direction or something, this could’ve been okay). The model in this question
part is a classifier, not a CRF.

b. (4 points) Now consider the full version of this task. Do you think a standard HMM (using categorical
distributions for transitions and emissions, like in Assignment 3) will work well here? Give two reasons
to justify your response.

No. Too many Os make transitions unreliable, and rare entities are hard to model with HMM emissions.
See the CRF lecture discussion for why HMMs don’t work well for tasks like this.

Page 8

CS378 Midterm Fall 2020 Name:

c. (4 points) Suppose you are given a test set of new tweets all from a single day. Your job is to return
predictions across all of them. First, you run your model on each tweet in isolation, but you’re not that
happy with the consistency of your results. Can you think of a way to postprocess your model’s output
to do something smarter and get better results? Put another way, what information could you use across
test data points to do better at this problem, and how would you use it? Justify your answer.

You could find hashtags that are predicted in some places in the test set and then assume that those
words should be hashtagged elsewhere in the test set as well. This could be done by looking at posterior
distributions or classifier scores, or just in a hard way.

Page 9

CS378 Midterm Fall 2020 Name:

4. (14 points) In this question, we are going to consider doing multiclass logistic regression with a very
large number of classes K > 10000. Here’s the multiclass logistic regression update with “different
features” as discussed in lecture:

Algorithm 1 Multiclass logistic regression update

1: Input: labeled data (x(i), y(i))Di=1, a feature extractor f .
2: Initialize w = 0, a nK-dimensional weight vector.
3: for t = 1 to T do . Loop over epochs
4: for i = 1 to D do . Loop over data
5: Define local variables x = x(i), y∗ = y(i) to denote the current example
6: Compute P (y = yj |x) = exp(w>f(x,yj))∑

y′∈Y exp(w>f(x,y′))
for all j in 1 . . .K

7: for j = 1 to K do . Loop over classes
8: w← w − P (y = yj |x)f(x, yj)
9: if y∗ = yj then

10: w← w + f(x, yj)
11: end if
12: end for
13: end for
14: end for

a. (3 points) Suppose that your “base” feature vector (before conjoining with classes) consists of n
features, but at most d of these base features are nonzero on any give example. What is the big-O runtime
of one iteration of the update (i.e., one pass through the i loop), assuming an efficient implementation?

O(dK). Weights times features is O(d) for each class, so you can compute all scores in O(dK) time.
Updates take K passes through with O(d) for each pass.

b. (7 points) Let’s try to make this update faster. There are two parts that are slow: computing the
probabilities for all the classes and then applying the update to all the classes. One way to make this
faster is by approximating the denominator and making fewer updates to the weight vector.

Suppose you’ve completed three full passes through the data (three epochs) with the “full” update,
and then on the fourth pass you know that the weight vector isn’t changing that dramatically anymore.
Describe an approximation to the update you can do on this pass. Feel free to reference the algorithm
by line numbers if you’d like. You do not need to provide working code, but you should be clear and
specific enough that someone else could implement it given your description.

Hint: record information about the first three passes in some kind of data structure, and try to avoid
making very small updates.

For each example, you should keep a list containing the gold class and the top predicted classes (by
score) over each of the first three epochs (say, 10 values per epoch). Then, for the fourth epoch, you

Page 10

CS378 Midterm Fall 2020 Name:

should only compute the distribution in line 6 over these ≤ 30 values and only make the update for
these values. This involves both approximating the denominator by a sum over these values alone as
well as approximating the gradient by ignoring most of the other classes.

This is related to the idea of negative sampling in skip-gram models (discussed in the video) and to
approximating the normalizing constant in any log-linear models. Such techniques are broadly useful
when dealing with settings like language modeling or skip-gram when the number of output classes is
high (e.g., the number of words in a vocabulary).

c. (4 points) For multiclass perceptron, the algorithm is faster since you don’t need to compute a nor-
malization over K classes; however, you still need to compute ypred, which requires computing scores
for each class. Describe how you might modify multiclass perceptron in the same setting as part (b)
(speeding up the fourth iteration).

This follows part (b): compute ypred over the cached set of top predicted classes. In this case, ypred is
approximate but the gradient update is “exact” for this choice of ypred.

5. (14 points) Consider the beam search algorithm as described in lecture. The algorithm we described

Page 11

CS378 Midterm Fall 2020 Name:

maintained a beam of k hypotheses at each timestep, with others being disregarded as possible prede-
cessors for the next state in search. However, another way to implement beam search is to have the
beam instead store all the hypotheses which are no more than α worse than the optimal in terms
of score. Put another way, if the current best hypothesis in the beam has score smax, then any hypoth-
esis with score at least smax − α will get added to the beam, even if this means every hypothesis gets
added. When a hypothesis with score s′ > smax gets added to the beam, hypotheses that are now too
low-ranking must be evicted.

a. (7 points) Assume you have the HMM parameters E and T as described in the lecture notes (you
won’t need the start parameters S). Using pseudocode, write the loop of the algorithm to take a previous
beam bp for timestep i− 1 in the sentence and efficiently produce the new beam bn. for timestep i. You
may use a beam data structure (call it Beam) implemented with a min-heap: insertion is logarithmic in
the number of elements, changing a value for a key is logarithmic, and removal of the “worst” element
is constant time.

It’s actually not most efficient to use the min-heap data structure. If there are |T | tags, during inference,
you might end up with up toO(|T |) elements in it if you happen to add the best one at the end: basically
consider the case when every tag other than the max has the same score, and the max tag gets checked
at the end. At that point, the log term causes you incur O(|T | log(|T |)) cost for using it. This, however,
was not our original intent in the question, but something we noticed later.

initialize b_n as a list
for each tag_curr in the tag set:

track tag_prev_best with tag_prev_best_score
for each tag_prev in b_p:

compute score = transition(tag_prev, tag_curr) + emission(tag_curr)
update tag_prev_best = tag_prev if score > tag_prev_best_score

add tag_curr to b_n with score tag_prev_best_score
compute s_max in b_n
drop all elements in b_n less than s_max - alpha

This beam search variant does occasionally show up in practice, though the fact that it might take longer
to run is usually a bit of a disadvantage.

Page 12

CS378 Midterm Fall 2020 Name:

b. (5 points) Suppose over the n steps of inference each beam ends up being size Bi for i = 1 to n. Let
Bmax be the largest of these. What is the worst-case runtime in big-O notation in terms of the sentence
length n, the number of tags |T |, and these beam sizes? Note that the worst case ranges over both
possible HMMs (maximally confusing/tricky ones) as well as orders of visiting the states.

Write a brief (2-3 sentence) justification of your response, referencing your algorithm from part (a) if
you’d like.

O(n|T |Bmax) following the algorithm above. Again, note that you can’t really save time using the min
heap here. Note that if you did use the min heap, you should typically have an extract O(log |T |) term
to correctly match your part (a).

c. (2 points) Suppose you have a sentence with mostly unambiguous words, where the emission prob-
ability of the word given one tag is substantially higher than those from all other tags (by at least α
in terms of log probability). 10% of the words are highly ambiguous and these are spread uniformly
at random throughout the sentence. Which do you think is more efficient: normal beam search or this
modified version? Justify your answer.

Modified beam search. In this case, you will save time at most positions by not maintaining several low
probability states; normal beam search will do this and maintain a fixed number of states everywhere.
For settings of the beam cutoff designed to maintain equivalent levels of uncertainty at the ambiguous
points, you’ll come out ahead of standard beam search.

Page 13

CS378 Midterm Fall 2020 Name:

6. (14 points) Suppose you have a dataset containing movie reviews. Each movie review is annotated
with two different labels, yS and yG, one corresponding to the sentiment (+ or -) and the other to the
genre (action, comedy, or romance) of the movie. Consider the following neural network, which models
both tasks at the same time (a multi-task model). The two classification tasks share the parameters at the
lower layers of the network and have independent classifiers at the last layer. The network is then trained
jointly to minimize the negative log likelihood of both tasks (these terms are added together). Such
networks are useful when you have two related tasks and shared representations z might be helpful.

f(x
) V

W1

W2g

z
so#max

so#max

P(y
S|

x)
P(y

G
| x

)

a. (7 points) Given below is the nn.Module initialization and forward function of a single-task net-
work. Modify this appropriately for the multi-task case. Your forward function should return a tuple
with log probabilities from task S and task G.

class FFNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):

self.V = nn.Linear(input_size, hidden_size)
self.nonlin = nn.Tanh()
self.W = nn.Linear(hidden_size, output_size)
self.log_sm = nn.LogSoftmax(dim=0)

Assume f_x is the averaged embeddings.
def forward(self, f_x, y_gold):

return self.log_sm(self.W(self.nonlin(self.V(x))))

Need two output size parameters for the different classification tasks

self.W1 = nn.Linear(hidden size, output size1)
self.W2 = nn.Linear(hidden size, output size2)
self.log sm = nn.LogSoftmax(dim=0)

forward:
intermediate = self.nonlin(self.V(x))
return (self.log sm(self.W1(intermediate)), self.log sm(self.W2(intermediate)))

Page 14

CS378 Midterm Fall 2020 Name:

b. (3 points) Suppose you take these logits and use them to compute lossS, the loss for the sentiment
analysis task, and lossG for the genre classification task. What parameters does the following code
update? List all parameters that get updated.

lossS.backward()
optimizer.step()

W1, V

c. (4 points) You are given the model trained using the multi-task objective, but do not have access
to the training data anymore. Suppose you get 1000 additional reviews, but annotated only with
the sentiment (+/-). What is the best strategy for using this data to further improve your sentiment
classification without harming the performance on the genre prediction task?

You should freeze the rest of the network and only update W1. Another solution that got nearly full
credit was to make predictions with the genre classifier, then use these as labels on this dataset, thereby
encouraging the model to keep the same behavior as the initial trained model. However, this can still do
weird things unless you use the posterior distribution as soft labels, and if you’re training on examples
drawn from a new distribution, it could still change the behavior of the underlying classifier on the
original training examples.

Page 15

CS378 Midterm Fall 2020 Name:

7. (17 points) Suppose you have the following NPs provided to your as your treebank:

NP

NML

JJ
heavy

NN
truck

NNS
rentals

NP

JJ
small

JJ
red

NNS
cars

NP

NML

JJ
dark

JJ
red

NNS
cars

NP

JJ
strong

NN
defense

NNS
agencies

You will construct a PCFG from these trees with NP as the start symbol in this grammar.

To binarize the trees, you will introduce a NP symbol to turn the ternary rules into binary rules (you
can write NP-B for “NP bar” if you’re typing your answer). This will be described in the following
questions.

For all question parts, assume that Greg comes along with a great part-of-speech tagger and tags these
sentences. So: (a) do not write down any grammar rules in the lexicon; only include the rules
above the part-of-speech tag layer; (b) when doing CKY, assume the gold tag has a score of 0.0
and all other tags have a score of −∞. In this case, each word’s tag is unambiguous anyway, so this
does not actually change your answer, just reduces the amount of writing.

a. (5 points) Write the grammar (rules and probabilities) you get if you use right-binarization: that is,
NP is introduced as a right child under the NP symbol for ternary-branching rules. (So NP→ JJ NP is
introduced for the small red cars example).

NP→ NML NNS 0.5
NP→ JJ NP-B 0.5
NML→ JJ NN 0.5
NML→ JJ JJ 0.5
NP-B→ JJ NNS 0.5
NP-B→ NN NNS 0.5

b. (4 points) Now parse the phrase large red cars with the tags JJ JJ NNS. Show your work and write
out every parse with nonzero probability and its probability.

There are two parses:
1/4 for the parse with NML: (NP (NML (JJ large) (JJ red)) (NNS cars))
1/4 for the NP-B parse: (NP (JJ large) (NP-B (JJ red) (NNS cars))

Page 16

CS378 Midterm Fall 2020 Name:

c. (4 points) Write the grammar you get if you use right-binarization on strong defense agencies but
left-binarization on small red cars. That is, for that one tree, make the NP the left child of the root NP.

NP→ NML NNS 0.5
NP→ NP-B NNS 0.25
NP→ JJ NP-B 0.25
NP-B→ JJ JJ 0.5
NP-B→ NN NNS 0.5
NML→ JJ NN 0.5
NML→ JJ JJ 0.5

d. (4 points) Now parse large red cars with tags JJ JJ NNS using this new grammar. Show your work,
write out every parse with nonzero probability and its probability.

1/4 for the parse with NML: (NP (NML (JJ large) (JJ red)) (NNS cars))
1/8 for the parse with NP-B, which is now left-branching: (NP (NP-B (JJ large) (JJ red)) (NNS cars))

Page 17

