Parser Evaluation

- View a parse as a set of labeled \textit{brackets} / constituents

 \[S(0,3), \ NP(0,1), \ NP(0,2), \ NP(2,3), \ PRP(1), \ PRP(0,1), \ PRP(2,3), \ NN(1,2), \ VBD(1,2) \]

 PRP(0,1) (but standard evaluation \textit{does not count POS tags})

 VP(1,3), VBD(1,2), NP(2,3), PRP(2,3)

- Precision: number of correct predictions / number of predictions = 2/3
- Recall: number of correct predictions / number of golds = 2/4
- F1: harmonic mean of precision and recall = \(\frac{1}{2} \times \left(\frac{2}{4} \right)^{-1} + \left(\frac{2}{3} \right)^{-1} \)^{-1}
 \[= 0.57 \text{ (closer to min)} \]

Results

- Standard dataset for English: Penn Treebank (Marcus et al., 1993)
- “Vanilla” PCFG: \~71 F1
- Best PCFGs for English: \~90 F1
- State-of-the-art discriminative models (using unlabeled data): 95 F1
- Other languages: results vary widely depending on annotation + complexity of the grammar
Grammar Preprocessing

Binarization

- To parse efficiently, we need our PCFGs to be at most binary (not CNF)

\[
P(VP \rightarrow VBD \text{ NP PP PP}) = 0.2
\]

\[
P(VP \rightarrow VBD \text{ VP-[NP PP PP]}) = 0.2
\]

\[
P(VP \rightarrow VBD \text{ VP-[NP PP PP]}) = 0.2
\]

\[
P(VP-[NP PP PP] \rightarrow NP VP-[PP PP]) = 1.0
\]

\[
P(VP-[PP PP] \rightarrow PP PP) = 1.0
\]

- Solution: transform the trees. Introduce intermediate special symbols that rewrite deterministically

\[
P(VP \rightarrow VBZ \text{ PP}) = 0.1
\]

\[
P(VP-[NP PP PP] \rightarrow NP VP-[PP PP]) = 1.0
\]

\[
P(VP-[PP PP] \rightarrow PP PP) = 1.0
\]

PCFG Independence Assumptions

- Language is not context-free: NPs in different contexts rewrite differently
- \([\text{They}]_{NP} \text{ received} \ [\text{the package of books}]_{NP}\)

Vertical Markovization

- Why is this a good idea?
Augment the grammar: deterministically transform symbols to be “less context free” (binarization not shown here)

75 F1 with basic PCFG => 86.3 F1 with this highly customized PCFG (SOTA was 90 F1 at the time, but with more complex methods)

Klein and Manning (2003)

Annotate each grammar symbol with its “head word”: most important word of that constituent

Rules for identifying headwords (e.g., the last word of an NP before a preposition is typically the head)

Collins and Charniak (late 90s): ~89 F1 with these

Dependency Parsing

Lexicalized Parsing
Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

```
ROOT ➔ DT ➔ NN ➔ VBD ➔ TO ➔ DT ➔ NN
```

- POS tags same as before, usually run a tagger first as preprocessing

Why are they defined this way?

- Constituency tests:
 - Substitution by proform: the dog did so [ran to the house], he [the dog] ran to the house
 - Clefting (It was [to the house] that the dog ran...)
 - Dependency: verb is the root of the clause, everything else follows from that
 - No notion of a VP!

Dependency Parsing

- Still a notion of hierarchy! Subtrees often align with constituents

```
DT ➔ NN ➔ VBD ➔ TO ➔ NN
```

- Can label dependencies according to syntactic function
 - Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)

```
DT ➔ NN ➔ VBD ➔ TO ➔ DT ➔ NN
```

- det ➔ nsubj ➔ prep ➔ det ➔ nsubj ➔ pren ➔ det ➔ nsubj ➔ pren
Dependency vs. Constituency: PP Attachment

- Constituency: several rule productions need to change

Dependency vs. Constituency: PP Attachment

- Dependency: one word (with) assigned a different parent

The children ate the cake with a spoon

- corenlp.run: spoon is child instead of with. This is just a different formalism
- More predicate-argument focused view of syntax
- “What’s the main verb of the sentence? What is its subject and object?” — easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

- Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination

- Dependency: first item is the head

Dogs in houses and cats

- Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency
- Can also choose and to be the head
- In both cases, headword doesn’t really represent the phrase — constituency representation makes more sense
Shift-Reduce Parsing
(see notes)