Using RNNs

What do RNNs produce?

- **Encoding of each word** (each h_i) — can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding)
- **Encoding of the sentence** (final h/c) — can pass this a decoder or make a classification decision about the sentence
- RNN can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

RNN Uses

- **Transducer**: make some prediction for each element in a sequence

 Output $y = \text{score for each tag, then softmax}$

 - $\text{DT} \quad \text{NN} \quad \text{VBD} \quad \text{JJ}$

 - The movie was great

- **Acceptor/encoder**: encode a sequence into a fixed-sized vector and use that for some purpose

 - Predict sentiment (matmul + softmax)

 - Translate

 - Paraphrase/compress

 - The movie was great

Multilayer Bidirectional RNN

- **Sentence classification based on concatenation of both final outputs**

- **Token classification based on concatenation of both directions’ token representations**
What do LSTMs return in PyTorch?

- Hidden/cell states are a 2-tuple, tensors of size \([\text{num_layers} \times \text{num_directions}, \text{batch_size}, \text{dimensionality}]\)
- 2x1xdim here
- Outputs are a single tensor of size \([\text{seq_len}, \text{batch_size}, \text{num_directions} \times \text{hidden_size}]\)
- 4x1xdim here

Training RNNs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)
- Backpropagate through entire network, RNN parameters get a gradient update from each timestep
- Example: sentiment analysis

Training RNNs

- Loss = negative log likelihood of probability of gold predictions, summed over the tags
- Loss terms filter back through network
- Example: language modeling (predict next word given context)
RNN Language Modeling

- **word probs**

\[
P(w|\text{context}) = \frac{\exp(w \cdot h_i)}{\sum_{w'} \exp(w' \cdot h_i)}
\]

is equivalent to

\[
P(w|\text{context}) = \text{softmax}(Wh_i)
\]

- \(W\) is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training RNNLMs

- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)

\[
\text{Total loss} = \sum \text{of negative log likelihoods at each position}
\]

- In PyTorch: simply add the losses together and call .backward()
Batched LM Training

- torch.nn.LSTM / torch.nn.GRU: expect input in [seq len, batch, word dim] format, or in [batch, seq len, word dim] if you set batch_first = True. Executed in parallel.

 - Input: [4, 2, dim]
 - Cannot parallelize across timesteps of RNN since output depends on previous timesteps, so using larger batches gives better parallelism.

Other Implementation Details

- torch.nn.Embedding: maps sequence of word indices to vectors
 - Input: [[126, 285]] -> [[0.1, -0.07, 1.2], [-2.3, 0.2, 1.4]]
 - Moves from [sequence length] vector of indices -> [seq len, dim] tensor or [batch, sequence length] matrix -> [batch, seq len, dim tensor]

LM Evaluation

- Accuracy doesn’t make sense — predicting the next word is generally impossible so accuracy values would be very low.

 Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

\[
\frac{1}{n} \sum_{i=1}^{n} \log P(w_i|w_1, \ldots, w_{i-1})
\]

- Perplexity: \(\exp(\text{average negative log likelihood})\). Lower is better
 - Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <= geometric mean of denominators

Visualizing LSTM LMs
Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells (components of c) to understand them
- Plot this value over timesteps, blue is smaller, red is larger

Karpathy et al. (2015)
Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track
- Uninterpretable: probably doing double-duty, or only makes sense in the context of another activation

State-of-the-art LMs

- Good LSTM LMs have ~27M params, 4-5 layers
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL ~ 60-80 (depending on how much you optimize it)
- LSTM character-level: PPL ~1.5 (205 character vocab)
- Better language models using transformers (will discuss after MT)