Announcements

- A4, A5 grading underway
- Final project check-ins due November 23
- Final projects due December 9

Recap

- Dataset artifacts / spurious correlations
 - Single-word correlations in NLI: hypothesis contains *not* -> contradiction
 - Answer type bias in QA: *where* -> return any reasonable location
- Various debiasing techniques:
 - Understand what examples are contributing to the bias
 - Reweighting training data to remove those examples
 - Data augmentation (not discussed)

Today

- Interpreting neural networks: what does this mean and why should we care?
- Local explanations: erasure techniques
- Gradient-based methods
- Evaluating explanations

Interpreting Neural Networks
Interpreting Neural Networks

- Neural models have complex behavior. How can we understand them?
- QA: why did the model prefer Stewart over Devin Funchess?

QID: 1f4b668a0343453b9d4bf3edc86da6f63
Question: who caught a 16-yard pass on this drive?
Answer: devin funchess

Start Distribution

there would be no more scoring in the third quarter, but early in the fourth, the broncos drove to the panthers 41-yard line, on the next play, early knocked the ball out of mansfield's hand, and then recovered it for carolina on the 50-yard line, a 16-yard reception by devin funchess and a 12-yard run by stewart, then set up gano's 39-yard field goal, cutting the panthers deficit to one score at 16-10. the next three drives of the game would end in punts.

Interpreting Neural Networks

- Neural models have complex behavior. How can we understand them?
- QA: why did the model prefer Stewart over Devin Funchess?

Sentiment:

<table>
<thead>
<tr>
<th>DAN</th>
<th>Ground Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>this movie was good</td>
<td>negative</td>
</tr>
<tr>
<td>this movie was bad</td>
<td>positive</td>
</tr>
<tr>
<td>the movie was bad</td>
<td>negative</td>
</tr>
</tbody>
</table>

Left side: predictions model makes on individual words

Tells us how these words combine

How do we know why a neural network model made the prediction it made?

Why explanations?

- **Trust:** if we see that models are behaving in human-like ways and making human-like mistakes, we might be more likely to trust them and deploy them
- **Causality:** if our classifier predicts class y because of input feature x, does that tell us that x causes y? Not necessarily, but it might be helpful to know
- **Informativeness:** more information may be useful (e.g., predicting a disease diagnosis isn’t that useful without knowing more about the patient’s situation)
- **Fairness:** ensure that predictions are non-discriminatory

Why explanations?

- Some models are naturally transparent: we can understand why they do what they do (e.g., a decision tree with <10 nodes)
- Explanations of more complex models
 - **Local explanations:** highlight what led to this classification decision. (Counterfactual: if these features were different, the model would’ve predicted a different class) — focus of this lecture
 - **Text explanations:** describe the model’s behavior in language
 - **Model probing:** auxiliary tasks, challenge sets, adversarial examples to understand more about how our model works

Iyyer et al. (2015)

Lipton (2016)

Lipton (2016); Belinkov and Glass (2018)
Local Explanations

(which parts of the input were responsible for the model's prediction on this particular data point?)

Attention Analysis

 Attention places most mass on good — did the model ignore not?

What if we removed not from the input?

Local Explanations

An explanation could help us answer counterfactual questions: if the input were x' instead of x, what would the output be?

that movie was not great, in fact it was terrible!
that movie was not __________ , in fact it was terrible!
that movie was ______ great, in fact it was ______!

Attention can't necessarily help us answer this!

Jain and Wallace (2019)

Sentiment Analysis with Attention

Similar to a DAN model, but (1) extra BiLSTM layer; (2) attention layer instead of just a sum

Jain and Wallace (2019)
Erasure Method

- Delete each word one by one and see how prediction prob changes

- that movie was not great, in fact it was terrible! — prob = 0.97
- __ movie was not great, in fact it was terrible! — prob = 0.97
- that ___ was not great, in fact it was terrible! — prob = 0.98
- that movie ____ not great, in fact it was terrible! — prob = 0.97
- that movie was ___ great, in fact it was terrible! — prob = 0.8
- that movie was not ___, in fact it was terrible! — prob = 0.99

Erasure Method

- Output: highlights of the input based on how strongly each word affects the output

- that movie was not great, in fact it was terrible!
- not contributed to predicting the negative class (removing it made it less negative), great contributed to predicting the positive class (removing it made it more negative)

- Will this work well?
- Inputs are now unnatural, model may behave in “weird” ways
- Saturation: if there are two features that each contribute to negative predictions, removing each one individually may not do much

LIME

- Locally-interpretable, model-agnostic explanations (LIME)

- Similar to erasure method, but we’re going to delete collections of things at once
- Can lead to more realistic input (although people often just delete words with it)
- More scalable to complex settings

Ribeiro et al. (2016)

LIME

- Break input into components (for text: could use words, phrases, sentences, ...)
- Check predictions on subsets of those
- Now we have model predictions on perturbed examples

This is what the model is doing on perturbed examples of the input.

Now we train a classifier to predict the model’s behavior based on what subset of the input it sees.

The weights of that classifier tell us which parts of the input are important.

This secondary classifier’s weights now give us highlights on the input:

- The movie is mediocre, maybe even bad. | Negative 99.8%
- The movie is mediocre, maybe even bad. | Negative 98.0%
- The movie is mediocre, maybe even bad. | Negative 98.7%
- The movie is mediocre, maybe even bad. | Positive 63.4%
- The movie is mediocre, maybe even bad. | Positive 74.5%
- The movie is mediocre, maybe even bad. | Negative 97.9%

The movie is mediocre, maybe even bad.

Problems with LIME:

- Lots of moving parts here: what perturbations to use? what model to train? etc.
- Expensive to call the model all these times
- Linear assumption about interactions may not be reliable

Gradient-based Methods
Problems with LIME

- Problem: fully removing pieces of the input may cause it to be very unnatural

LIME/erasure zeroes out certain features

- Alternative approach: look at what this perturbation does locally right around the data point using gradients

Gradient-based Methods

- Score = weights * features
 (or an NN, or whatever)

Learning a model

- Compute derivative of score with respect to weights: how can changing weights improve score of correct class?

Gradient-based Explanations

- Compute derivative of score with respect to features: how can changing features improve score of correct class?

Problems with LIME

- Originally used for images

\[S_c = \text{score of class } c \]
\[I_0 = \text{current image} \]

\[w = \frac{\partial S_c}{\partial I} \bigg|_{I_0} \]

- Higher gradient magnitude = small change in pixels leads to large change in prediction

Simonyan et al. (2013)
Problems with LIME

- Suppose you have prediction = A OR B for features A and B. Changing either feature doesn’t change the prediction, but changing both would. Gradient-based method says neither is important.
- Integrated gradients: compute gradients along a path from the origin to the current data point, aggregate these to learn feature importance.
- Intermediate points can reveal new info about features.

Evaluating Explanations

Faithfulness vs. Plausibility

- Suppose our model is a bag-of-words model with the following:
 - the = -1, movie = -1, good = +3, bad = 0
 - the movie was good prediction score = +1
 - the movie was bad prediction score = -2
- Suppose explanation returned by LIME is:
 - the movie was good
 - the movie was bad
- Is this a "correct" explanation?

Faithfulness vs. Plausibility

- **Plausible** explanation: matches what a human would do
 - the movie was good the movie was bad
 - Maybe useful to explain a task to a human, but it’s not what the model is really doing!
- **Faithful** explanation: actually reflects the behavior of the model
 - the movie was good the movie was bad
 - We usually prefer faithful explanations; non-faithful explanations are actually deceiving us about what our models are doing!
- Rudin: *Stop Explaining Black Box Models for High-Stakes Decisions and Use Interpretable Models Instead*
Evaluating Explanations

- Nguyen (2018): delete words from the input and see how quickly the model flips its prediction?
 - Downside: not a “real” use case
- Hase and Bansal (2020): counterfactual simulatability: user should be able to predict what the model would do in another situation
 - Hard to evaluate

What to Expect from Explanations?

- What do we really want from explanations?
 - Explanations should describe model behavior with respect to counterfactuals (Miller, 2019; Jacovi and Goldberg, 2021)
 - The movie is not that bad.
 - The movie is not ____.
 - What about *realistic* counterfactuals? Since dropping tokens isn’t always meaningful
 - The movie is not actually bad.
- We are going to evaluate explanations based on whether they can tell us useful things about model behavior

A Multi-hop QA Example

- Ye et al. (2021)
 - We formulate a hypothesis about the model’s behavior, and test it using counterfactuals

 Base Example
 - Are Super High Me and All in This Tea both documentaries?
 - Super High Me is a 2008 documentary film about smoking.
 - All in This Tea is a 2007 documentary film.

 Token-Level Explanation
 - Super High Me is a 2008 documentary film about smoking.
 - All in This Tea is a 2007 documentary film.

 Expected Behavior
 - The hypothesis is true.

 Mismatch
 - The hypothesis is not true. Model always predict YES.
Ongoing Conversation

- Lots of ongoing research:
 - How do we interpret explanations?
 - How do *users* interpret our explanations?
 - How should *automated systems* make use of explanations?
- Still a growing area

Packages

- AllenNLP Interpret: https://allenai.org/interpret
- Captum (Facebook): https://captum.ai/
- Various pros and cons to the different frameworks

Takeaways

- Many other ways to do explanation:
 - Probing tasks: do vectors capture information about part-of-speech tags?
 - Diagnostic test sets (“unit tests” for models)
 - Building models that are explicitly interpretable (decision trees)

Wallace, Gardner, Singh
Interpretability Tutorial at EMNLP 2020