

#### **Announcements**

- ▶ FP due December 9
- ▶ Next lecture ethics and the last written response
- eCIS evaluations: please fill these out for extra credit!

## Multilinguality



## NLP in other languages

- ▶ Other languages present some challenges not seen in English at all!
- ▶ Some of our algorithms have been specified to English
- ▶ Some structures like constituency parsing don't make sense for other languages
- ▶ Neural methods are typically tuned to English-scale resources, may not be the best for other languages where less data is available
- Question:
  - 1) What other phenomena / challenges do we need to solve?
  - 2) How can we leverage existing resources to do better in other languages without just annotating massive data?



#### This Lecture

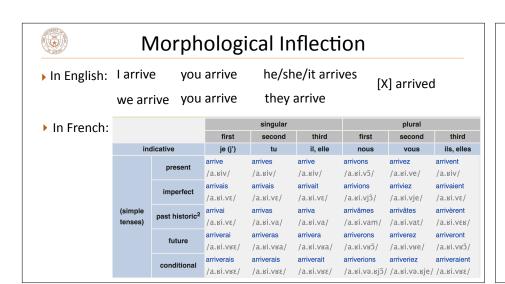
- ▶ Morphological richness: effects and challenges
- ▶ Morphology tasks: analysis, inflection, word segmentation
- ▶ Cross-lingual tagging and parsing
- ▶ Cross-lingual pre-training

# Morphology



# What is morphology?

- ▶ Study of how words form
- Derivational morphology: create a new word from a root word estrange (v) => estrangement (n) become (v) => unbecoming (adj)
  - ▶ May not be totally regular: enflame => inflammable
- ▶ Inflectional morphology: word is inflected based on its context
  I become / she becomes
  - ▶ Mostly applies to verbs and nouns





# Morphological Inflection

▶ In Spanish:

|            |             |            | singular                                      |                       |                      | plural               |                        |
|------------|-------------|------------|-----------------------------------------------|-----------------------|----------------------|----------------------|------------------------|
|            |             | 1st person | 2nd person                                    | 3rd person            | 1st person           | 2nd person           | 3rd person             |
|            |             | уо         | tú<br>vos                                     | él/ella/ello<br>usted | nosotros<br>nosotras | vosotros<br>vosotras | ellos/ellas<br>ustedes |
|            | present     | llego      | llegas <sup>tú</sup><br>llegás <sup>vos</sup> | llega                 | llegamos             | llegáis              | llegan                 |
| indicative | imperfect   | llegaba    | llegabas                                      | llegaba               | llegábamos           | llegabais            | llegaban               |
|            | preterite   | llegué     | llegaste                                      | llegó                 | llegamos             | llegasteis           | llegaron               |
|            | future      | llegaré    | llegarás                                      | llegará               | llegaremos           | llegaréis            | llegarán               |
|            | conditional | llegaría   | llegarías                                     | llegaría              | llegaríamos          | llegaríais           | llegarían              |



#### Noun Inflection

Not just verbs either; gender, number, case complicate things

| Declension of Kind [hide 🛦 |        |      |                             |        |         |  |  |  |
|----------------------------|--------|------|-----------------------------|--------|---------|--|--|--|
|                            |        |      | singular                    | plural |         |  |  |  |
|                            | indef. | def. | noun                        | def.   | noun    |  |  |  |
| nominative                 | ein    | das  | Kind                        | die    | Kinder  |  |  |  |
| genitive                   | eines  | des  | Kindes,<br>Kinds            | der    | Kinder  |  |  |  |
| dative                     | einem  | dem  | Kind,<br>Kinde <sup>1</sup> | den    | Kindern |  |  |  |
| accusative                 | ein    | das  | Kind                        | die    | Kinder  |  |  |  |

- Nominative: I/he/she, accusative: me/him/her, genitive: mine/his/hers
- Dative: merged with accusative in English, shows recipient of something I taught the children <=> Ich unterrichte die Kinder I give the children a book <=> Ich gebe den Kindern ein Buch



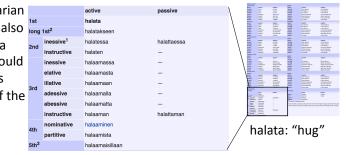
#### Irregular Inflection

- ▶ Common words are often irregular
  - ▶ I am / you are / she is
  - ▶ Je suis / tu es / elle est
  - ▶ Soy / está / es
- ▶ Less common words typically fall into some regular *paradigm* these are somewhat predictable



#### **Agglutinating Langauges**

Finnish/Hungarian (Finno-Ugric), also Turkish: what a preposition would do in English is instead part of the verb (hug)



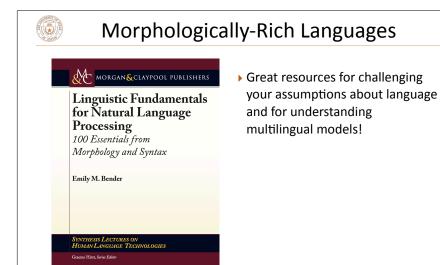
illative: "into" adessive: "on"

▶ Many possible forms — and in newswire data, only a few are observed

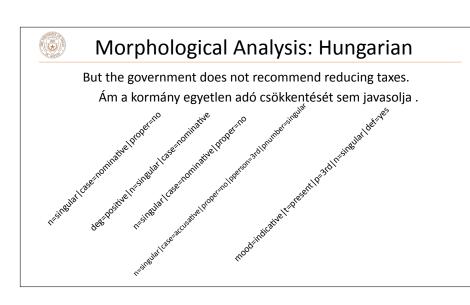


### Morphologically-Rich Languages

- ▶ Many languages spoken all over the world have much richer morphology than English
- ➤ CoNLL 2006 / 2007: dependency parsing + morphological analyses for ~15 mostly Indo-European languages
- ▶ SPMRL shared tasks (2013-2014): Syntactic Parsing of Morphologically-Rich Languages
- Universal Dependencies project
- Word piece / byte-pair encoding models for MT are pretty good at handling these if there's enough data



# Morphological Analysis/Inflection





## Morphological Analysis

- ▶ Given a word in context, predict what its morphological features are
- ▶ Basic approach: combines two modules:
  - Lexicon: tells you what possibilities are for the word
  - ▶ Analyzer: statistical model that disambiguates
- ▶ Models are largely CRF-like: score morphological features in context
- ▶ Lots of work on Arabic analysis (high amounts of ambiguity)
- ▶ Inverse task of analysis: inflection



#### Morphological Inflection

- ▶ Machine translation where phrase table is defined in terms of lemmas
- "Translate-and-inflect": translate into uninflected words and predict inflection based on source side

Chahuneau et al. (2013)



#### **Chinese Word Segmentation**

- Word segmentation: some languages including Chinese are totally untokenized
- LSTMs over character embeddings / character bigram embeddings to predict word boundaries
- Having the right segmentation can help machine translation

冬天 (winter), 能 (can) 穿 (wear) 多少 (amount) 穿 (wear) 多少 (amount); 夏天 (summer), 能 (can) 穿 (wear) 多 (more) 少 (little) 穿 (wear) 多 (more) 少 (little)。

Without the word "夏天 (summer)" or "冬天 (winter)", it is difficult to segment the phrase "能 穿多少穿多少".

- separating nouns and pre-modifying adjectives: 高血压 (high blood pressure)
   → 高(high) 血压(blood pressure)
- separating compound nouns:
   内政部 (Department of Internal Affairs)
   → 内政(Internal Affairs) 部(Department).

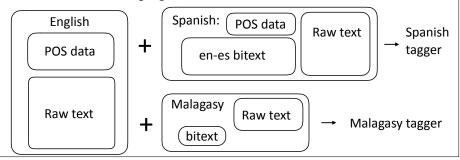
Chen et al. (2015)

**Cross-Lingual Tagging and Parsing** 



### **Cross-Lingual Tagging**

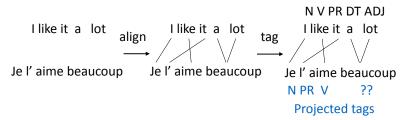
- Labeling POS datasets is expensive
- ▶ Can we transfer annotation from *high-resource* languages (English, etc.) to *low-resource* languages?





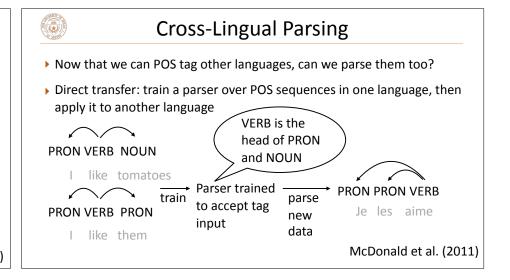
### **Cross-Lingual Tagging**

▶ Can we leverage word alignment here?



► Tag with English tagger, project across bitext, train French tagger? Works pretty well

Das and Petrov (2011)





## **Cross-Lingual Parsing**

|     | best-source |          | avg-source | gold       | I-POS       | pred-POS   |             |
|-----|-------------|----------|------------|------------|-------------|------------|-------------|
|     | source      | gold-POS | gold-POS   | multi-dir. | multi-proj. | multi-dir. | multi-proj. |
| da  | it          | 48.6     | 46.3       | 48.9       | 49.5        | 46.2       | 47.5        |
| de  | nl          | 55.8     | 48.9       | 56.7       | 56.6        | 51.7       | 52.0        |
| el  | en          | 63.9     | 51.7       | 60.1       | 65.1        | 58.5       | 63.0        |
| es  | it          | 68.4     | 53.2       | 64.2       | 64.5        | 55.6       | 56.5        |
| it  | pt pt       | 69.1     | 58.5       | 64.1       | 65.0        | 56.8       | 58.9        |
| nl  | el          | 62.1     | 49.9       | 55.8       | 65.7        | 54.3       | 64.4        |
| pt  | it          | 74.8     | 61.6       | 74.0       | 75.6        | 67.7       | 70.3        |
| sv  | pt          | 66.8     | 54.8       | 65.3       | 68.0        | 58.3       | 62.1        |
| avg |             | 63.7     | 51.6       | 61.1       | 63.8        | 56.1       | 59.3        |

- ▶ Multi-dir: transfer a parser trained on several source treebanks to the target language
- ▶ Multi-proj: more complex annotation projection approach

McDonald et al. (2011)

**Cross-Lingual Word Representations** 

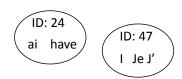


#### Multilingual Embeddings

▶ Input: corpora in many languages. Output: embeddings where similar words in different languages have similar embeddings

I have an apple 47 24 18 427

J' ai des oranges 47 24 89 1981

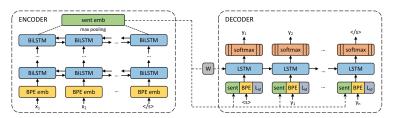


- multiCluster: use bilingual dictionaries to form clusters of words that are translations of one another, replace corpora with cluster IDs, train "monolingual" embeddings over all these corpora
- Works okay but not all that well

Ammar et al. (2016)



#### **Multilingual Sentence Embeddings**



- Form BPE vocabulary over all corpora (50k merges); will include characters from every script
- Take a bunch of bitexts and train an MT model between a bunch of language pairs with shared parameters, use W as sentence embeddings

  Artetxe et al. (2019)



#### Multilingual Sentence Embeddings

|                     |                  |             |        |             |      |      |      |      | TONE | → XX       |      |      |      |      |      |      |
|---------------------|------------------|-------------|--------|-------------|------|------|------|------|------|------------|------|------|------|------|------|------|
|                     |                  | EN          | fr     | es          | de   | el   | bg   | ru   | tr   | → AA<br>ar | vi   | th   | zh   | hi   | sw   | ur   |
| Zero-Shot Transfer, | , one NLI system | for all     | langua | ges:        |      |      |      |      |      |            |      |      |      |      |      |      |
| Conneau et al.      | X-BiLSTM         | 73.7        | 67.7   | 68.7        | 67.7 | 68.9 | 67.9 | 65.4 | 64.2 | 64.8       | 66.4 | 64.1 | 65.8 | 64.1 | 55.7 | 58.4 |
| (2018b)             | X-CBOW           | 64.5        | 60.3   | 60.7        | 61.0 | 60.5 | 60.4 | 57.8 | 58.7 | 57.5       | 58.8 | 56.9 | 58.8 | 56.3 | 50.4 | 52.2 |
| BERT uncased*       | Transformer      | <u>81.4</u> | -      | <u>74.3</u> | 70.5 | -    | -    | -    | -    | 62.1       | -    | -    | 63.8 | -    | -    | 58.3 |
| Proposed method     | BiLSTM           | 73.9        | 71.9   | 72.9        | 72.6 | 72.8 | 74.2 | 72.1 | 69.7 | 71.4       | 72.0 | 69.2 | 71.4 | 65.5 | 62.2 | 61.0 |

▶ Train a system for NLI (entailment/neutral/contradiction of a sentence pair) on English and evaluate on other languages

Artetxe et al. (2019)



### Multilingual BERT

- ▶ Take top 104 Wikipedias, train BERT on all of them simultaneously
- What does this look like?

Beethoven may have proposed unsuccessfully to Therese Malfatti, the supposed dedicatee of "Für Elise"; his status as a commoner may again have interfered with those plans.

当人们在马尔法蒂身后发现这部小曲的手稿时,便误认为上面写的是"Für Elise"(即《给爱丽丝》)[51]。

Кита́й (официально — Кита́йская Наро́дная Респу́блика, сокращённо — КНР; кит. трад. 中華人民共和國, упр. 中华人民共和国, пиньинь: Zhōnghuá Rénmín Gònghéguó, палл.: Чжунхуа Жэньминь Гунхэго) — государство в Восточной Аз Devlin et al. (2019)



#### Multilingual BERT: Results

| Fine-tuning \ Eval | EN    | DE    | NL    | ES    | Fine-tuning \ Eval | EN    | DE    | ES    | IT    |
|--------------------|-------|-------|-------|-------|--------------------|-------|-------|-------|-------|
| EN                 | 90.70 | 69.74 | 77.36 | 73.59 | EN                 | 96.82 | 89.40 | 85.91 | 91.60 |
| DE                 | 73.83 | 82.00 | 76.25 | 70.03 | DE                 | 83.99 | 93.99 | 86.32 | 88.39 |
| NL                 | 65.46 | 65.68 | 89.86 | 72.10 | ES                 | 81.64 | 88.87 | 96.71 | 93.71 |
| ES                 | 65 38 | 59 40 | 64 39 | 87.18 | IT                 | 86 79 | 87.82 | 91 28 | 98.11 |

Table 1: NER F1 results on the CoNLL data.

Table 2: Pos accuracy on a subset of UD languages.

- ▶ Can transfer BERT directly across languages with some success
- ...but this evaluation is on languages that all share an alphabet

Pires et al. (2019)



## Multilingual BERT: Results

|    | HI   | UR   |    | EN   | BG   | JA   |
|----|------|------|----|------|------|------|
| HI | 97.1 | 85.9 | EN | 96.8 | 87.1 | 49.4 |
| UR | 91.1 | 93.8 | BG | 82.2 | 98.9 | 51.6 |
|    |      |      | JA | 57.4 | 67.2 | 96.5 |

Table 4: POS accuracy on the UD test set for languages with different scripts. Row=fine-tuning, column=eval.

- Urdu (Arabic/Nastaliq script) => Hindi (Devanagari). Transfers well despite different alphabets!
- ▶ Japanese => English: different script and very different syntax

Pires et al. (2019)



## Scaling Up: XLM-R

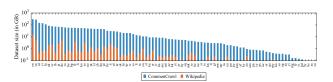


Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

- ▶ Larger "Common Crawl" dataset, better performance than mBERT
- ▶ Low-resource languages benefit from training on other languages
- ▶ High-resource languages see a small performance hit, but not much

Conneau et al. (2019)



## Scaling Up: Benchmarks

| Task           | Corpus       | Train   | Dev    | Test         | Test sets    | Lang.    | Task            |
|----------------|--------------|---------|--------|--------------|--------------|----------|-----------------|
| Classification | XNLI         | 392,702 | 2,490  | 5,010        | translations | 15       | NLI             |
| Classification | PAWS-X       | 49,401  | 2,000  | 2,000        | translations | 7        | Paraphrase      |
| C+             | POS          | 21,253  | 3,974  | 47-20,436    | ind. annot.  | 33 (90)  | POS             |
| Struct. pred.  | NER          | 20,000  | 10,000 | 1,000-10,000 | ind. annot.  | 40 (176) | NER             |
|                | XQuAD        | 97.500  | 24.726 | 1,190        | translations | 11       | Span extraction |
| QA             | MLQA         | 87,599  | 34,726 | 4,517-11,590 | translations | 7        | Span extraction |
|                | TyDiQA-GoldP | 3,696   | 634    | 323-2,719    | ind. annot.  | 9        | Span extraction |
| Retrieval      | BUCC         | -       | -      | 1,896–14,330 | -            | 5        | Sent. retrieval |
|                | Tatoeba      | _       | _      | 1,000        | _            | 33 (122) | Sent. retrieval |

- Many of these datasets are translations of base datasets, not originally annotated in those languages
- ▶ Exceptions: POS, NER, TyDiQA

Hu et al. (2021)



#### **TyDiQA**

- Typologicallydiverse QA dataset
- Annotators write questions based on very short snippets of articles; answers may or may not exist, fetched from elsewhere in Wikipedia
- Q: Как далеко Уран от how far Uranus-SG.Nom from Земл-и? Earth-SG.Gen?
- How far is Uranus from Earth?
- A: Расстояние между Уран-ом distance between Uranus-SG.INSTR и Земл-ёй меняется от 2,6 and Earth-SG.INSTR varies from 2,6 до 3,15 млрд км... to 3,15 bln km...

The distance between Uranus and Earth fluctuates from 2.6 to 3.15 bln km...

|    | Language   | Train   | Dev     | Test    |
|----|------------|---------|---------|---------|
|    | Language   | (1-way) | (3-way) | (3-way) |
|    |            |         |         |         |
|    | (English)  | 9,211   | 1031    | 1046    |
|    | Arabic     | 23,092  | 1380    | 1421    |
|    | Bengali    | 10,768  | 328     | 334     |
|    | Finnish    | 15,285  | 2082    | 2065    |
|    | Indonesian | 14,952  | 1805    | 1809    |
|    | Japanese   | 16,288  | 1709    | 1706    |
|    | Kiswahili  | 17,613  | 2288    | 2278    |
|    | Korean     | 10,981  | 1698    | 1722    |
|    | Russian    | 12,803  | 1625    | 1637    |
| c- | Telugu     | 24,558  | 2479    | 2530    |
| ι- | Thai       | 11,365  | 2245    | 2203    |
|    | TOTAL      | 166,916 | 18,670  | 18,751  |

Clark et al. (2021)



### **Cross-Lingual Typing**

- Train an mBERT-based typing model on Wikipedia data in English, Spanish, German and Finnish
- Achieves solid performance even on totally new languages like Japanese that don't share a character set with these

Sequence: 菊池は アメリカ大リーグ への参戦も 視野に進路が注目されていたが、10月25日に日本のプロ野球に挑戦することを表明していた。...

**Translation**: Kikuchi was considering <u>Major League</u>
<u>Baseball</u> as his next career, but he announced that
he would play professional baseball in Japan ...

**Predictions**: baseball, established, establishments, in the united states, organizations, sports

Gold Types: baseball, baseball leagues in the united states, bodies, established, establishments, events, in canada, in the united states, major league baseball, multi-national professional sports leagues, organizations, professional, sporting, sports...

Precision: 100%

**Recall**: 31.6%

Selvaraj, Onoe, Durrett (2021)



#### Where are we now?

- ▶ Universal dependencies: treebanks (+ tags) for 70+ languages
- Datasets in other languages are still small, so projection techniques may still help
- More corpora in other languages, less and less reliance on structured tools like parsers, and pretraining on unlabeled data means that performance on other languages is better than ever
- ▶ Multilingual models seem to be working better and better can even transfer to new languages "zero-shot". But still many challenges for low-resource settings



#### **Takeaways**

- Many languages have richer morphology than English and pose distinct challenges
- Problems: how to analyze rich morphology, how to generate with it
- ▶ Can leverage resources for English using bitexts
- Multilingual models can be learned in a bitext-free way and can transfer between languages
- ▶ Next time: wrapup + discussion of ethics