HMM POS Tagging

> Penn Treebank English POS tagging (see homework): 44 tags
> Baseline: assign each word its most frequent tag: ~90% accuracy

POS Tagg|ng > Trigram HMM (model pairs of tags): ~95% accuracy / 55% on words
not seen in train

» TnT tagger (Brants 1998, tuned HMM): 96.2% acc / 86.0% on unks
> CRF tagger (Toutanova + Manning 2000): 96.9% / 87.0%

» State-of-the-art (BiLSTM-CRFs, BERT): 97.5% / 89%+

Slide credit: Dan Klein
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CRFs and NER

Named Entity Recognition

B-PER I-PER O O O B-LOC O O OBORG O O
Barack Obama will travel to Hangzhou today for the G20 meeting .

PERSON LOC ORG

> Frame as a sequence problem with a BIO tagset: begin, inside, outside

> Why might an HMM not do so well here?

> Lots of O’s, so tags aren’t as informative about context

> Want to use context features (to Hangzhou => Hangzhou is a LOC)

> Conditional random fields (CRFs) can help solve these problems

HMMs

> Big advantage: transitions, scoring pairs of adjacent y’s
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> Big downside: not able to incorporate useful word context information

> Solution: switch from generative to discriminative model (conditional
random fields) so we can condition on the entire input.

> Conditional random fields: logistic regression + features on pairs of y’s

>

>

Tagging with Logistic Regression

Logistic regression over each tag individually: “different features” approach to

. features for a single tag
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Score of a prediction: sum of weights dot features over each individual
predicted tag (this is a simple CRF but not the general form)
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Set Z equal to the product of denominators; we’ll discuss this in a few slides




Example

B-PER I-PER O O
Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(I-PER, i=2, x) + fe(O, i=3, x) + f(O, i=4, x)

[CurrWord=0Obama & label=I-PER, PrevWord=Barack & label=I-PER,
CurrWordIsCapitalized & label=I-PER, ...]

B-PER B-PER O O
Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(B-PER, i=2, x) + fe(0, i=3, x) + fe(O, i=4, X)

Adding Structure
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> We want to be able to learn that some tags don’t follow other tags —
want to have features on tag pairs
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> Score: sum of weights dot f. features over each predicted tag (“emissions”
plus sum of weights dot f; features over tag pairs (“transitions”)

> This is a sequential CRF

Example

B-PER I-PER O O

Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(I-PER, i=2, x) + f¢(O, i=3, x) + f¢(O, i=4, x)
+ fi(B-PER, I-PER, i=1, x) + fi(I-PER, O, i=2, x) + f(O, O, i=3, x)

B-PER B-PER O O

Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(B-PER, i=2, x) + fe(O, i=3, x) + f<(O, i=4, x)
+ fi(B-PER, B-PER, i=1, x) + f(B-PER, O, i=2, x) + f:(O, O, i=3, X)

» Obama can start a new named entity (emission feats look okay), but
we’re not likely to have two PER entities in a row (transition feats)

Features for NER
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0! B-LOC

Emissions: f.(B-LOC,i = 6,x) = Indicator[B-LOC & Curr word = Hangzhou]
Indicator[B-LOC & Prev word = to]

> We couldn’t use a “previous word” feature in the HMM at all!




Conditional Random Fields
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normalizer Z: must make this a probability distribution over all possible seqgs

Z = Z exp (Z w ' f(y),1,%) + Zwat(yg,ngrl,i,x))
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Inference and Learning
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> Inference: Can use the Viterbi algorithm to find the highest scoring path.
Replace HMM log probs with “scores” from weights dot features

log P(x;|y;) — wae(yi,i,X)
T ' (initial distribution is removed)
log P(yilyi—1) = w fi(yi—1,¥i,4,%)

> Learning: requires running forward-backward (like Viterbi but with
summing instead of maxing over y’s) to compute Z, then doing some tricky
math to compute gradients [outside scope of the course/not on midterm]

Takeaways

> CRFs provide a way to build structured feature-based models: logistic
regression over structured objects like sequences

> Inference and learning can still be done efficiently but require
dynamic programming

> CRFs don’t have to be linear models; can use scores derived from
neural networks (“neural CRFs”)




