CS378: Natural Language Processing
Lecture 16: Transformers

Greg Durrett

The University of Texas at Austin

Multi-Head Self-Attention

Multi-Head Self Attention

» Multiple “heads” analogous to different convolutional filters

> Let E = [sent len, embedding dim] be the input sentence. This will be
passed through three different linear layers to produce three mats:

» Query Q = EWQ: these are like the decoder hidden state in attention

> Keys K = EWK: these control what gets attended to, along with the query

> Values V = EWV: these vectors get summed up to form the output

QKT)V

Vdy
= dim of keys

Attention(Q), K, V') = softmax(

Vaswani et al. (2017)

Input

Embedding

Queries

Keys

Values

Self-Attention

Alammar, The lllustrated Transformer

WA

Self-Attention

Alammar, The lllustrated Transformer

sent len x sent len (attn for

each word to each other)

softmax()

sent len x hidden dim

/ is a weighted combination of V rows

Multi-head Self-Attention

Just duplicate the whole Alammar, The lllustrated Transformer

computation with different
weights:

ATTENTION HEAD #0 ATTENTION HEAD #1

Multi-head Self-Attention

1) This is our 2) We embed 3) Split into 8 heads.
iInput sentence* each word* We multiply X or
with weight matrices
X Wo©
K
Thinking - Wo v
Machines Wo
W;0
* In all encoders other than #0, W4 K
we don't need embedding. W,V
We start directly with the output
of the encoder right below this one
W-Q
1 \W/K
W,V

4) Calculate attention
using the resulting

Q/K/V matrices

Qo
e Ko
*j Vo
__Gh
o
_ U
e

5) Concatenate the resulting = matrices,
then multiply with weight matrix
produce the output of the layer

Properties of Self-Attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?*) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

> n =sentence length, d = hidden dim, k = kernel size, r = restricted
neighborhood size

> Quadratic complexity, but O(1) sequential operations (not linear like
in RNNs) and O(1) “path” for words to inform each other

Vaswani et al. (2017)

Transformers

Architecture

> Alternate multi-head self-attention with

_Add & Norm _
feedforward layers that operate over each ~dd & o
word individually

FFN(z) — max((), xWqi + bl)Wz + bo

> These feedforward layers are where most
of the parameters are Add & Norm

> Residual connections in the model: input of a I\/Iultl-H'ead
Attention

laver is added to its output
Y P L1 J

> Layer normalization: controls the scale of
different layers in very deep networks (not
needed in A4)

Dimensions

d model

Add & Norm

» Vectors: dmodes

~ Queries/keys: di, always smaller than dmode

> Values: separate dimension d,,

output is multiplied by WO which ’
1S dy X dmodel SO We can get back to
dmodel before the residual Gy -> dmodel Multi-Head
Attention
> FFN can explode the dimension with W1 O 8 0.
and collapse it back with W»
FFN(IIZ‘) — max((), .CEWl -+ bl)W2 -+ bg dmodel

Vaswani et al. (2017)

Transformer Architecture

d model

N dmodel dr h dk d’U

base | 6 512 2048 8 64 64 Add & Norm

> From Vaswani et al.

Model Name Nparams Niayers dmodel Nheads dhead o

GPT-3 Small 125M 12 768 12 64 Add & Norm
GPT-3 Medium 350M 24 1024 16 64 '

GPT-3 Large 760M 24 1536 16 96 Multi-Head
GPT-3 XL 1.3B 24 2048 24 128 -
GPT-32.7B 2. 7B 32 2560 32 80 Attention
GPT-3 6.7B 6.7B 32 4096 32 128 \ 4
GPT-3 13B 13.0B 40 5140 40 128

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128

. Omodel
> From GPT-3; dheqd IS OUr di

Transformer Architecture

% % % %
1 FLOPs/ FLOPS FLOPS FLOPS FLOPS
description update MHA FFN attn logit

8 OPT setups
9 760M 4.3E+15 35% 44% 148% 5.8%
10 1.3B 1.3E+16 32% 51% 12.7% 5.0%
11 2.7B 2.5EL16 29% 56% 11.2% 3.3%
12 6.7B 1. 1E+17 24% 65% 81% 2.4%
13 13B 4.1E+17 22% 69% ©69% 1.6%
14 30B 9.0E+17 20% 4% 53% 1.0%
15 ©66B 9.5E+17 18% 7% 43% 0.6%
16 175B 2.4E+18 17% 80% 3.3% 0.3%

Credit: Stephen Roller on Twitter

Transformers: Position Sensitivity

— T~

The ballerina is very excited that she will dance in the show.

> If this is in a longer context, we want words to attend locally

> But transformers have no notion of position by default

Vaswani et al. (2017)

Transformers: Position Sensitivity

Positional
Encoding

QU
INnput

INputs

emb(l) | +
emb(2) | +
emb(3) | +
emb(4) | +

> Encode each sequence position as an integer, add it to the word
embedding vector

> Why does this work?

Transformers

Alammar, The lllustrated Transformer

> Alternative from Vaswani et al.: sines/cosines of different frequencies
(closer words get higher dot products by default)

Words

Embeddmg d|m

Transformers: Complete Model

Probabilities

> Original Transformer paper presents an

encoder-decoder model

Add & Norm

Feed
Forward

> Right now we don’t need to think about both
of these parts — will return in the context of
s MT

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention
1

Positional
Encoding

Add & Norm

Masked
Multi-Head
Attention

N x

> Can turn the encoder into a decoder-only
model through use of a triangular causal
QO QO coang attention mask (only allow attention to

Input Output .
previous tokens)

Input Output .
o shited right Vaswani et al. (2017)

