CS378: Natural Language Processing Lecture 16: Transformers

Greg Durrett

Multi-Head Self-Attention

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let E = [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
 - Query Q = EW^Q: these are like the decoder hidden state in attention
 - Keys $K = EW^{K}$: these control what gets attended to, along with the query
 - Values $V = EW^{V}$: these vectors get summed up to form the output

Attention(Q, K, V)

$$) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

dim of keys

Vaswani et al. (2017)

Values

Self-Attention

Self-Attention

=

Х

 \times

Wv

V

Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Multi-head Self-Attention

1) This is our 2) We embed input sentence* each word*

3) Split into 8 heads. We multiply X or R with weight matrices

W₀Q

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

- h = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size
- Quadratic complexity, but O(1) sequential operations (not linear like) in RNNs) and O(1) "path" for words to inform each other

Vaswani et al. (2017)

Transformers

Alternate multi-head self-attention with feedforward layers that operate over each word individually

 $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in A4)

Architecture

- Vectors: d_{model}
- Queries/keys: d_k , always smaller than d_{model}
- Values: separate dimension d_v , output is multiplied by W^o which is $d_v x d_{model}$ so we can get back to *d_{model}* before the residual
- FFN can explode the dimension with W_1 and collapse it back with W_2

 $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$

Dimensions

Transformer Architecture

		N	d_{model}	$d_{ m ff}$	h	d_k	d_v
_	base	6	512	2048	8	64	64

From Vaswani et al.

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$
GPT-3 Small	125M	12	768	12	64
GPT-3 Medium	350M	24	1024	16	64
GPT-3 Large	760M	24	1536	16	96
GPT-3 XL	1.3B	24	2048	24	128
GPT-3 2.7B	2.7B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128

From GPT-3; d_{head} is our d_k

Transformer Architecture

1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

Credit: Stephen Roller on Twitter

- If this is in a longer context, we want words to attend locally
- But transformers have no notion of position by default

Transformers: Position Sensitivity

Vaswani et al. (2017)

- Encode each sequence position as an integer, add it to the word embedding vector
- Why does this work?

Transformers

Alammar, The Illustrated Transformer Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)

-0.8

Embedding dim

Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts — will return in the context of

- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)
 - Vaswani et al. (2017)

