CS378: Natural Language Processing Lecture 16: Transformers

Greg Durrett

Multi-Head Self-Attention

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let $E=$ [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
- Query $Q=E W Q$: these are like the decoder hidden state in attention
- Keys $K=E W^{K}$: these control what gets attended to, along with the query
- Values $V=E W^{V}$: these vectors get summed up to form the output

$$
\text { Attention }(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V
$$

dim of keys

Self-Attention

Input
Embedding

Queries

Keys

Embedding

Alammar, The Illustrated Transformer

W^{Q}

$\mathbf{W}^{\mathbf{k}}$

wv

Self-Attention

Alammar, The Illustrated Transformer sent len x sent len (attn for each word to each other)

Z is a weighted combination of V rows

Multi-head Self-Attention

Just duplicate the whole

Alammar, The Illustrated Transformer computation with different weights:

Multi-head Self-Attention

1) This is our input sentence*
2) We embed each word*

Thinking
Machines

3) Split into 8 heads. We multiply X or
R with weight matrices
4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting Z matrices, then multiply with weight matrix W^{0} to produce the output of the layer

* In all encoders other than \#0, we don't need embedding. We start directly with the output of the encoder right below this one

$W_{7}{ }^{Q}$

...

...

Wo

Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$	$O\left(\log _{k}(n)\right)$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n / r)$

- $n=$ sentence length, $d=$ hidden $\operatorname{dim}, k=$ kernel size, $r=$ restricted neighborhood size
- Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other

Transformers

Architecture

- Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$
\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}
$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not
 needed in A4)

Dimensions

- Vectors: $d_{\text {model }}$
- Queries/keys: d_{k}, always smaller than $d_{\text {model }}$
- Values: separate dimension d_{v}, output is multiplied by wo which is $d_{v} x d_{\text {model }}$ so we can get back to $d_{\text {model }}$ before the residual

Vaswani et al. (2017)

Transformer Architecture

	N	$d_{\text {model }}$	d_{ff}	h	d_{k}	d_{v}
base	6	512	2048	8	64	64

- From Vaswani et al.

Model Name	$n_{\text {params }}$	$n_{\text {layers }}$	$d_{\text {model }}$	$n_{\text {heads }}$	$d_{\text {head }}$
GPT-3 Small	125 M	12	768	12	64
GPT-3 Medium	350 M	24	1024	16	64
GPT-3 Large	760 M	24	1536	16	96
GPT-3 XL	1.3 B	24	2048	24	128
GPT-3 2.7B	2.7 B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0 B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0 B	96	12288	96	128

- From GPT-3; $d_{h e a d}$ is our d_{k}

Transformer Architecture

1	description	FLOPs / update	$\begin{array}{r} \% \\ \text { FLOPS } \\ \text { MHA } \end{array}$	$\%$ FLOPS FFN	FLOPS	FLOPS logit
8	OPT setups					
9	760M	$4.3 \mathrm{E}+15$	35\%	44\%	14.8\%	5.8\%
10	1.3B	1.3E+16	32\%	51\%	12.7\%	5.0\%
11	2.7B	$2.5 \mathrm{E}+16$	29\%	56\%	11.2\%	3.3\%
12	6.7B	1.1E+17	24\%	65\%	8.1\%	2.4\%
13	13B	$4.1 \mathrm{E}+17$	22\%	69\%	6.9\%	1.6\%
14	30B	9.0E+17	20\%	74\%	5.3\%	1.0\%
15	66B	$9.5 \mathrm{E}+17$	18\%	77\%	4.3\%	0.6\%
16	175B	$2.4 \mathrm{E}+18$	17\%	80\%	3.3\%	0.3\%

Credit: Stephen Roller on Twitter

Transformers: Position Sensitivity

The ballerina is very excited that she will dance in the show.

- If this is in a longer context, we want words to attend locally
- But transformers have no notion of position by default

Transformers: Position Sensitivity

- Encode each sequence position as an integer, add it to the word embedding vector
- Why does this work?

Transformers

Alammar, The Illustrated Transformer

- Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)

Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts - will return in the context of MT
- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)

