CS378: Natural Language Processing Lecture 16: Transformers

Multi-Head Self-Attention

۲

The University of Texas at Aust

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let E = [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
 - Query $Q = EW^{Q}$: these are like the **decoder hidden state** in attention
 - ▶ Keys *K* = *EW^K*: these control what gets attended to, along with the query
 - → Values V = EW^V: these vectors get summed up to form the output

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

dim of keys
Vaswani et al. (2017)

Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

n = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size

Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other

Vaswani et al. (2017)

Transformer Architecture										
1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit				
8	OPT setups									
9	760M	4.3E+15	35%	44%	14.8%	5.8%				
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%				
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%				
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%				
13	13B	4.1E+17	22%	69%	6.9%	1.6%				
14	30B	9.0E+17	20%	74%	5.3%	1.0%				
15	66B	9.5E+17	18%	77%	4.3%	0.6%				
16	175B	2.4E+18	17%	80%	3.3%	0.3%				

