CS 378 Lecture 16: Transformers
Announcements

- Midterm back
- AY out
- Custom FPs due Thurs

Recap Language modeling

$$
P(\bar{w})=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)
$$

N-grans: $\quad P\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right)$
RNNs: encode -whole sequence into

$$
\left.\begin{array}{l}
\text { vector } \bar{h} \\
\square
\end{array} \rightarrow \square_{T} \rightarrow \square_{T} \rightarrow\right]_{T} \rightarrow
$$

swimming running
I like going $\bar{h}_{3} \quad Q(w)=$ softmax $\left(W \bar{h}_{3}\right)$

Today Transformers:

- Attention
- Self-attention
- Details: masking and position encoding
- Transformer architecture

Transformer Abstraction

$$
e_{2}^{\prime}=\text { function }\left(e_{1}, e_{2}\right)
$$

$$
\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)=\operatorname{RNN}\left(e_{1}, e_{2}, e_{3}\right)
$$

hidden state at time i is a contextualized embedding of e_{i}

I'm scared of bats
I swing bats
Transformer: layer that contextualizes works based on other wands in the sequence same "AP1" as RNN

$$
\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)=\text { Transformer }\left(e_{1}, e_{2}, e_{3}\right)
$$

Running example:
suppose we have seqs of Os_{s} and I_{s}
00000 if all os \Rightarrow ends in 0
01101 if any $1 \Rightarrow$ ends in 1

RNN wont do well on
$10000 \ldots .$.
(100 os)
info needs to travel through 100 cells
Attention: allow us to attend to certain elements of the context (we want to find Is)

Keys, a query
Keys: embedded versions of the sequence.
Assume: $O=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad 1=\left[\begin{array}{l}0 \\ 1\end{array}\right] \begin{aligned} & \text { one-hat } \\ & \text { embs. }\end{aligned}$

$$
\frac{\operatorname{xevi}\left[\begin{array}{l}
1 \\
0
\end{array}\right]}{0} \frac{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}{0} \frac{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}{1} 0
$$

query: What we want to find $q=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ want to find is
Attention
(1) Compute score for each key $S_{i}=k_{i}^{\top} q$ dot product

$$
\begin{array}{rrrrr}
s: 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & \text { query }=1=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}
$$

(2) softmax the scores to get proms.

$$
\bar{\alpha}=\operatorname{softmax}(\bar{s}) \quad \text { Assume } e=3
$$

(3) Compute output value

$$
\begin{aligned}
& \text { result }=\sum_{i=1}^{n} \alpha_{i} e_{i} \\
& =\frac{1}{6}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{1}{6}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\frac{1}{6}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]
\end{aligned}
$$

$\begin{aligned} & \text { (no attn) } \\ & \text { Average of all } 4 \text { vectors }\end{aligned}=\left[\begin{array}{l}3 / 4 \\ 1 / 4\end{array}\right]$
What if we had the seq
0000 and $q=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ (looking for 1)
attus: $1 / 4 \quad 1 / 4 \quad 1 / 4 \quad 1 / 4$ compare: with result: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Problem: long $s e q \Rightarrow$ attu not very pared?
Modify the Keys
Before: $K_{i}=e_{i}$ (embedding)
Now: $k_{i}=W_{e}^{k} e_{i}$
$\begin{array}{lllll}\text { seq: } & 0 & 0 & 1 & 0\end{array} k_{i} q$

Formulas for attention:
dot product: $K_{i}{ }^{\top} q$
"linear" attu: $k_{i}^{\top} W q$

Can view it as $\left(W^{\top} k_{i}\right)^{\top} q$ or $k_{i}^{T}\left(w_{q}\right)$
w either affects k or q
In reality: W^{k}, W^{Q} both

$$
\left(k_{i}^{\top} W^{k}\right)\left(W^{Q} q\right)
$$

Self-attention:
every word is a key and a query simultaneously

$$
(d=2, \text { emp. }
$$

$Q: \operatorname{seq} \operatorname{len} x d$
K: seq len $\times d$

$$
W{ }^{\text {We want to find }}:\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \quad E=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

W^{k} : $\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$ "boosta"
Cin generel ivese idfre)

$$
\begin{aligned}
& Q=E\left(W^{Q}\right)^{\top} \\
& K=E\left(W^{K}\right)^{\top}
\end{aligned} \quad Q=\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Scores

$$
S=Q K^{\top}
$$

$$
K=\left[\begin{array}{ccc}
10 & 0 \\
10 & 0 \\
0 & 10 \\
10 & 0
\end{array}\right]
$$

\int len $x d$ len $S_{i j}=q_{i}$ (ith row of Q) lenxlen

- K_{j} ($j^{\text {th }}$ rourack)
scones for query 1

$$
\begin{aligned}
& S=\left[\begin{array}{llll}
S_{11} & S_{12} & S_{13} & s_{14} \\
& & &
\end{array}\right] \\
& \begin{array}{llll}
& & & \\
\text { for query } \\
\text { attis }
\end{array} \\
&
\end{aligned}
$$

Example Let's take 01 as the sequence
(1)

$$
\left.\begin{array}{l}
W^{Q}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { (identity) } W^{k}=\left[\begin{array}{ll}
10 & 0 \\
0 & 10
\end{array}\right] \\
Q=\operatorname{Embs}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{\text {emp }} \text { for word word } 2\right.
\end{array}\right)
$$

$Q:\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0\end{array}\right]$ "word at posh 1 is looking $\begin{aligned} \text { for at pose } 2 \text { is looking }\end{aligned}$ for ls" for $1 s^{\prime \prime}$
$k:\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$ boosted E

$$
\begin{aligned}
& S=Q K^{\top}=\left[\begin{array}{ll}
10 & \text { score for } \\
0 & 10
\end{array}\right]+q_{1}+k_{1} \\
& A=\operatorname{softchax}(S)=\left[\begin{array}{cc}
0.999 & 0 \\
0 & 0.99
\end{array}\right]
\end{aligned}
$$

sequence: 0 l

$$
\begin{aligned}
(2) W^{Q} & =\left[\begin{array}{l}
?
\end{array}\right] \quad E\left(W^{Q}\right)^{\top} \\
Q & =\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& S=\left[\begin{array}{ll}
0 & 10 \\
0 & 10
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right] \\
& A=\left[\begin{array}{ll}
0 & 0.999 \\
0 & 0.999
\end{array}\right]
\end{aligned}
$$

, attus embs
Output: AE
(In Transfurmer paper: $W^{0} A E$)
In paper: softmax $\left(\frac{Q K^{\top}}{\sqrt{d_{k}}}\right) V$

