CS378: Natural Language Processing
Lecture 17: Transformers for
Language Modeling, Implementation

Greg Durrett

@ TEXAS
The University of Texas at Austin

Transformers

Dimensions

d model

Add & Norm

» Vectors: dmodes

~ Queries/keys: di, always smaller than dmode

> Values: separate dimension d,,

output is multiplied by WO which ’
1S dy X dmodel SO We can get back to
dmodel before the residual Gy -> dmodel Multi-Head
Attention
> FFN can explode the dimension with W1 O 8 0.
and collapse it back with W»
FFN(IIZ‘) — max((), .CEWl -+ bl)W2 -+ bg dmodel

Vaswani et al. (2017)

Transformers: Position Sensitivity

— T~

The ballerina is very excited that she will dance in the show.

> If this is in a longer context, we want words to attend locally

> But transformers have no notion of position by default

Vaswani et al. (2017)

Transformers: Position Sensitivity

Positional
Encoding

QU
INnput

INputs

emb(l) | +
emb(2) | +
emb(3) | +
emb(4) | +

> Encode each sequence position as an integer, add it to the word
embedding vector

> Why does this work?

Transformers

Alammar, The lllustrated Transformer

> Alternative from Vaswani et al.: sines/cosines of different frequencies
(closer words get higher dot products by default)

Words

Embeddmg d|m

Transformers: Complete Model

Probabilities

> Original Transformer paper presents an

encoder-decoder model

Add & Norm

Feed
Forward

> Right now we don’t need to think about both
of these parts — will return in the context of
s MT

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention
1

Positional
Encoding

Add & Norm

Masked
Multi-Head
Attention

N x

> Decoder differs because each token only
attends to those coming before it. Can do this
Q¢ Q) coang With an attention mask

Input Output
Embedding Embedding

Input Output .
o shited right Vaswani et al. (2017)

Attention Maps

>~ Example visualization of heir average albedo
attention matrix A (from
assignment)

- - D =

~ Each row: distribution over
what that token attends to.
E.g., the first “v” attends very
heavily to itself (bright yellow

box)

m e @ = D <

> Your task on the HW: assess
if the attentions make sense

Using Transformers

What do Transformers produce?

I | | |
the movie was great

> Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

> Like RNNs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

> Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t vt 1

the movie was great
> Classifier: encode a sequence into a fixed-sized vector and classify that

predict sentiment (matmul + softmax)

average poolin
5€ P translate

paraphrase/compress

the movie was great

Transformer Uses

predict sentiment (matmul + softmax)

average poolin
5€ P translate

paraphrase/compress

the movie was great

>~ Alternative: use a placeholder [CLS] token at the start of the sequence. Because
[CLS] attends to everything with self-attention, it can do the pooling for you!

encoding of [CLS token] — matmul + softmax — predict sentiment

E————

[CLS] the movie was great

Transformer Uses

> Sentence pair classifier: feed in two sentences and classify something
about their relationship

Contradiction

T

|

|CLS] The woman is driving a car [SEP] The woman is walking .

> Why might Transformers be particularly good at sentence pair tasks
compared to something like a DAN?

Transformer Language Modeling

Transformer Language Modeling

word probs . h-
777771 P(w|context) = XD - by)
N wa’ exp(w’ . hl)
equivalent to
| saw the dog P(w|context) = softmax(Wh,)

~ W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)

Training Transformer LMs

| saw the dog running

I | | D e
<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one,

>~ Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs
I:I P(w | context)

loss = — log P(w | context)

||E . Total loss = sum of negative log

_ likelihoods at each position

I | D | |
| saw the dog

loss fcn = nn.NLLLoss ()

loss += loss fcn(log probs, ex.output tensor)
[seq len, num output classes] [seq len]

>~ Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num
classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Trammg

batch dirm / (looked very excited to be

N

saw the dog running

I | | N | e
_ <s> | saw the dog

~

g in the park and it h

J

_ <s> in the park and Y

|/

> Multiple sequences and multiple

timesteps per sequence

A Small Problem with Transformer LMs

> This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

| saw the dog running
I | D |

I | D | D | N | e
<s> | saw the dog

> With standard self-attention: “1” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

Attention Masking

~ We want to prohibit Key words

<s> | saw the dog

Query words ¢aw

~ We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

> nn.TransformerEncoder can be built out of nn.TransformerEncoderlLayers,
can accept an input and a mask for language modeling:

Inside the module; need to fill 1in size parameters

layers = nn.TransformerkEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder layers, num_layers=[...])

[. . .]

Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer encoder(input, mask=mask)

> You cannot use these for Part 1, only for Part 2

LM Evaluation

> Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

> Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)

1 (4’
E ZlogP(wiWh ' . vwi—l)
1=1

~ Perplexity: exp(average negative log likelihood). Lower is better
> Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

~ Avg NLL (base e) =1.242 Perplexity = 3.464 <== geometric mean of
denominators

Preview: Pre-training and BERT

> Transformers are usually large and you don’t want to train them for each
new task

Train on language modeling... then “fine-tune” that model on your
target task with a new classification layer
movie was great . DT NN VBD I
tf 1 f

the movie was great the movie was great

Transformer Extensions

Scaling Laws

/ 4.2
6 e L=(D/5_4,1013)—0.095 5.0 — L=(N/8_8.1013)—O.076
3.9
4.8
n
4 3.6 0.
1 4
"qm'; 3.3 3.
= 3.
3.0
2.4
L = (Cmin/2.3-108)70:030
10~ 10-7 10°> 10=% 10! 10! 108 109 105 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute?® used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

- |
Transtormers scale really well! Kaplan et al. (2020)

Transformer Runtime

> Even though most Charformer Tay et al. (2020)
parameters and FLOPs are .
in feedforward layers,

Transformers are still

TokenlLearner
(Ryoo et al., 2021)

Transformer-XL

, Nystromformer
(Dai et al., 2019)

(Xiong et al., 2019)

Memory / Memory
Downsampling Compressed

Recurrence

Compressive

Transformer
(Rae et al., 2018)

Set Transformer
(Lee et al., 2019)

. . o : Clusterformer
limited by quadratic T firanatormer | s
. ransformer
, Funnel Poolingformer (Roy et al, 2020) Reformer
. Barformer ‘ Transformer (#hangetal. 2021) (Kitaev et al., 2020)
complexity of self- oy N pwewmn
ETC Big Bird
L P TT f (Ainslie et al., 2020) (Zaheer et al., 2020)
. ow-Rank Transformer ,
a l I e n'tl O n (Winata et al., 2020) Longformer Swin Clustered Attent
(Beltagy et al., 2020) i usiere ention
Transformer Sinkhorn (Vyas et al., 2020)

(Liu et al., 2020)
Transformer
(Tay et al., 2020b)

Low Rank / /| g short

Linformer

woes 20 Kernels [Transformer) Eixad/Factorized/
~ Many ways proposed -' Adaptive
Sunthes Random Patterns Sparse
. Random Feature Attention |°YNthesizer Transformer
tO h a n d I e t h I S (Peng et al., 2021) (Tayetal, 20202 Blockwise Transformer (Huggi-tla\f.,ezLB) (Lepi(liﬁr:taalr.lgozo) (Correia et al., 2019)
(Qiu et al., 2019)

Linear
Transformer

Sparse clam

(Du et al., 2021)

Sparse Transformer

(Katharopoulos et al., 2020) Image Transformer (Child et al., 2019) Switch
P t al., 2018
(Parmar et a) Transformer Product Key
Axial Transformer (Fedus et al., 2021) Memory

(Ho et al., 2019) (Lample et al., 2019)

Scaling Transformer
(Jaszczur et al., 2021)

Performers

’ — — — — — — — — — — — — — — — e _— _— e e _— _ —

f"’QZ
,

©

o EEEE S . S . . S S S O T - - ———
--—_—_—-—_——-’

-~

~—-—-_--—----——---—_---’

Figure 1: Approximation of the regular attention mechanism AV (before D ~!-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

> No more len? term, but we are fundamentally approximating the
self-attention mechanism (cannot form A and take the softmax)

Choromanski et al. (2020)

Longformer

(a) Full n? attention (b) Sliding window attention (¢) Dilated sliding window (d) Global+sliding window

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longtormer.

>~ Use several pre-specified self-attention patterns that limit the number of
operations while still allowing for attention over a reasonable set of things

> Scales to 4096-length sequences
Beltagy et al. (2021)

Vision and RL

~ DALL-E 1: learns a discrete “codebook” and treats an image as a
sequence of visual tokens which can be modeled autoregressively,
then decoded back to an image

> Decision Transformer: does reinforcement learning by Transformer-
based modeling over a series of actions

> Transformers are now being used all over Al

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

> Transformers are going to be the foundation for the much of the rest
of this class and are a ubiquitous architecture nowadays

> Many details to get right, many ways to tweak and extend them, but
core idea is the multi-head self attention and their ability to
contextualize items in sequences

> Next: machine translation and seq2seq models (conditional language
modeling)

