CS378: Natural Language Processing
Lecture 17: Transformers for
Language Modeling, Implementation

Greg Durrett

TEXAS

The University of Texas at Austin

Transformers

Dimensions
- L dmode/
> Vectors: dmodel a & N
» Queries/keys: dk, always smaller than dmodel oo Feed
Forward
> Values: separate dimension d,,
output is multiplied by WO which Gl
is dvX dmodel SO We can get back to Add & Norm
dmodel before the residual dy > dmodel Multi-Head
Attention
> FFN can explode the dimension with W1 dik dik 3.7
and collapse it back with W, e)
FFN(J)) = max(O, Wy + bl)Wz + b Amodel

Vaswani et al. (2017)

Transformers: Position Sensitivity

PR

The ballerina is very excited that she will dance in the show.

> If this is in a longer context, we want words to attend /ocally

» But transformers have no notion of position by default

Vaswani et al. (2017)

Transformers: Position Sensitivity

Transformers

Alammar, The lllustrated Transformer

Positional Q me VE+ gt > Alternative from Vaswani et al.: sines/cosines of different frequencies
Fneoding | ds get higher dot products by default)
n A " A (closer words g g p y
Embedding
i gl g [z
£ g |E
Inputs o o o [}
(%]
°
> Encode each sequence position as an integer, add it to the word go
embedding vector
> Why does this work?
Embeddihg dim
Transformers: Complete Model Attention Maps
Probabilities
> Original Transformer paper presents an » Example visualization of AN S S il

encoder-decoder model

> Right now we don’t need to think about both
of these parts — will return in the context of

Add & Norm

Multi-Head

Add & Norm

Feed Attention
1| E—_
Add & Norm
N Masked
Anton " tonion > Decoder differs because each token only
LY) A) . . .
L) attends to those coming before it. Can do this
Positional Positional . .
Encocing QS) teoang With an attention mask
Embedding Emboing
i i
Inputs Outputs

(shited right) Vaswani et al. (2017)

attention matrix A (from
assignment)

- -0 T

> Each row: distribution over
what that token attends to.
E.g., the first “v” attends very
heavily to itself (bright yellow
box)

mQ w0 <o

> Your task on the HW: assess
if the attentions make sense

cQnT o

Using Transformers

What do Transformers produce?

i t t i
[I I Il |
the movie was great

> Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

> Like RNNs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

> Transducer: make some prediction for each element in a sequence

DT NN VBD J
4 4 4 t output y = score for each tag, then softmax

tt 1

the movie was great
> Classifier: encode a sequence into a fixed-sized vector and classify that

predict sentiment (matmul + softmax)

average poolin
g pfg_< translate

paraphrase/compress
i t 1 i

the movie was great

Transformer Uses

predict sentiment (matmul + softmax)

average poolin
& p’_g_< translate

paraphrase/compress
i t i i

the movie was great

> Alternative: use a placeholder [CLS] token at the start of the sequence. Because
[CLS] attends to everything with self-attention, it can do the pooling for you!

encoding of [CLS token] — matmul + softmax — predict sentiment

: |
1 i f 1 t

[CLS] the movie was great

Transformer Uses

> Sentence pair classifier: feed in two sentences and classify something
about their relationship

Contradiction
t

[CLS] The woman is driving a car [SEP] The woman is walking .

> Why might Transformers be particularly good at sentence pair tasks
compared to something like a DAN?

Transformer Language Modeling

Transformer Language Modeling

word probs - h:
| P(w|context) = ZeXp(V\E ’l)h)
, EXpIW' - Ny
h; I#I w 5P
| | equivalent to
t t t t

| saw the dog P(w|context) = softmax(Wh,;)

> Wis a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)

Training Transformer LMs

| saw the dog running

t t+ t 1t 1 |

<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one,

> Allows us to train on predictions across several timesteps simultaneously

(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

| I — P(w | context)

, ' T — “loss = — log P(w* | context)
| F Il I I F ' Total loss = sum of negative log
| | likelihoods at each position
f f f f

[I I Il |
| saw the dog

loss_fcn = nn.NLLLoss()

loss += loss_fcn(log_probs, ex.output_tensor)
[seq len, num output classes] [seq len]

> Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num
classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training

batch dim / (looked very excited to be N
in the park and it h
(1 saw the dog running\ t 1 t 1 t
1 t 1 ' ' [F I[F I[F I[F I[F]
[F] F][7 I[F | F] | |
| | t t i i
i f i [I : I I[I[|
| 1T | 11 Il I | <> in the park and /J

k <s>

saw the dog)

> Multiple sequences and multiple

timesteps per sequence

A Small Problem with Transformer LMs

> This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

| saw the dog running

| t i t i |
t i t i

[Il Il Il Il |
<s> | saw the dog

» With standard self-attention: “I” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

> We want to prohibit

Attention Masking

Key words
<s> | saw the dog
<s> |
| I
Query words gqw I
the [
dog

> We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

> nn.TransformerEncoder can be built out of nn.TransformerEncoderlLayers,
can accept an input and a mask for language modeling:

Inside the module; need to fill in size parameters

layers = nn.TransformerEncoderLayer([...])

transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .1

Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)

output = transformer_encoder(input, mask=mask)

> You cannot use these for Part 1, only for Part 2

LM Evaluation

> Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

> Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)

- Zlog P(w;|wy, ..., wi—1)
S i=1

> Perplexity: exp(average negative log likelihood). Lower is better
> Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

> Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of
denominators

Preview: Pre-training and BERT

> Transformers are usually large and you don’t want to train them for each
new task

Train on language modeling... then “fine-tune” that model on your

target task with a new classification layer

movie was great . DT NN VBD JJ
| 1 1 t i | t t i t
| |

1t f 1 tt 1

the movie was great the movie was great

Transformer Extensions

Scaling Laws Transformer Runtime

7
6 \ 4.2 —— [=(D/5.4-1013)700% | 5.6 —— L=(N/8.8-1013)-0076 s Even though mOSt Cliaifomey Tay et al. (2020)
TokenLe
° * 8 parameters and FLOPs are St e
2 26 LR REens
S ' 0 in feedforward layers, Recumrohe Memory/ wenoy
3 3.3 32 . compressive| DOWNsampling Compressed
e . : Transformers are still rorormise) sot rnstomes
e
3.0 . . . Routing Cluj‘:ir:oggef
- . 108)-0.050 2.4 limited by quadratlc Famel Poolingformar~_ Trensformer /™ R;fwm,
L= (Cmin/2.3-10%) | it f |f performer Transformer)
27 - o
12079 10-7 10-5 10-3 10-1 10! 108 109 105 107 109 Comp exi y or se ' aﬁ:,gf.\"gm
. . Low-Rank Transformer Swin
Compute Dataset Size Parameters attention ey Tansomer o Clstred terion
PF-days, non-embedding tokens non-embedding Uinformer LOW Rar|1k/ Long Short e Transformet
wmesmaw Kernels [Transformer
Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset * Many ways proposed D

Transformer
(consiaetal, 2019

size, and amount of compute? used for training. For optimal performance all three factors must be scaled

GShat
(Lepin tal, 2020)

to handle this

up in tandem. Empirical performance has a power-law relationship with each individual factor when not R — Sparse
bottlenecked by the othertwo. N e EFREEGET e s ichi prodct ey
"

Axial Transformer lemory
oeta, 209) (ampleetal,2019)

. I
Transformers scale really well! Kaplan et al. (2020)

Performers Longformer

S O(L*d) N SOLrd) T 2y _
fb : — l I /O(Lrd) : ‘-;__7 r J‘.‘_ "3;“ :: £ u:
T fecteg P e

E

‘
= EEelEE

" fecci

‘

=

:

~
X
U

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

v

Figure 1: Approximation of the regular attention mechanism AV (before D~ !-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

» Use several pre-specified self-attention patterns that limit the number of
> No more len2 term, but we are fundamentally approximating the operations while still allowing for attention over a reasonable set of things

self-attention mechanism (cannot form A and take the softmax) - Scales to 4096-length sequences

Choromanski et al. (2020) Beltagy et al. (2021)

Vision and RL

> DALL-E 1: learns a discrete “codebook” and treats an image as a
sequence of visual tokens which can be modeled autoregressively,
then decoded back to an image

> Decision Transformer: does reinforcement learning by Transformer-
based modeling over a series of actions

> Transformers are now being used all over Al

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

> Transformers are going to be the foundation for the much of the rest
of this class and are a ubiquitous architecture nowadays

> Many details to get right, many ways to tweak and extend them, but
core idea is the multi-head self attention and their ability to
contextualize items in sequences

> Next: machine translation and seq2seq models (conditional language

modeling)

