
CS378:	Natural	Language	Processing	
Lecture	17:	Transformers	for	

Language	Modeling,	Implementa@on

Greg	DurreC

Transformers

Dimensions

Vaswani	et	al.	(2017)

‣ Vectors:	dmodel

‣ Queries/keys:	dk	,	always	smaller	than	dmodel

‣ Values:	separate	dimension	dv	,	
output	is	mul@plied	by	WO	which	
is	dv	x	dmodel	so	we	can	get	back	to	
dmodel	before	the	residual

dmodel

dk dk dv

dv	->	dmodel

dmodel

dinternal

dmodel

‣ FFN	can	explode	the	dimension	with	W1	
and	collapse	it	back	with	W2

Transformers:	Posi@on	Sensi@vity

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ If	this	is	in	a	longer	context,	we	want	words	to	aCend	locally

‣ But	transformers	have	no	no;on	of	posi;on	by	default

Transformers:	Posi@on	Sensi@vity

‣ Encode	each	sequence	posi@on	as	an	integer,	add	it	to	the	word	
embedding	vector

‣ Why	does	this	work?

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

+ + + +

Transformers
Alammar,	The	Illustrated	Transformer

W
or
ds

Embedding	dim

‣ Alterna@ve	from	Vaswani	et	al.:	sines/cosines	of	different	frequencies	
(closer	words	get	higher	dot	products	by	default)

Transformers:	Complete	Model

Vaswani	et	al.	(2017)

‣ Original	Transformer	paper	presents	an	
encoder-decoder	model

‣ Right	now	we	don’t	need	to	think	about	both	
of	these	parts	—	will	return	in	the	context	of	
MT

‣ Decoder	differs	because	each	token	only	
aCends	to	those	coming	before	it.	Can	do	this	
with	an	a)en*on	mask

ACen@on	Maps
‣ Example	visualiza@on	of	
aCen@on	matrix	A	(from	
assignment)

‣ Each	row:	distribu@on	over	
what	that	token	aCends	to.	
E.g.,	the	first	“v”	aCends	very	
heavily	to	itself	(bright	yellow	
box)

‣Your	task	on	the	HW:	assess	
if	the	a)en*ons	make	sense

Using	Transformers

What	do	Transformers	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predic@on	(like	predic@ng	the	next	word	for	language	modeling)

the		movie		was			great

‣ Like	RNNs,	Transformers	can	be	viewed	as	a	transforma@on	of	a	
sequence	of	vectors	into	a	sequence	of	context-dependent	vectors

Transformer	Uses
‣ Transducer:	make	some	predic@on	for	each	element	in	a	sequence

‣ Classifier:	encode	a	sequence	into	a	fixed-sized	vector	and	classify	that

the		movie		was			great

predict	sen@ment	(matmul	+	sogmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	sogmax

average	pooling

Transformer	Uses

the		movie		was			great

predict	sen@ment	(matmul	+	sogmax)

translate
paraphrase/compress

average	pooling

‣ Alterna@ve:	use	a	placeholder	[CLS]	token	at	the	start	of	the	sequence.	Because	
[CLS]	aCends	to	everything	with	self-aCen@on,	it	can	do	the	pooling	for	you!

[CLS]	the		movie		was			great

encoding	of	[CLS	token]							matmul	+	sogmax								predict	sen@ment

Transformer	Uses

[CLS]	The	woman	is	driving	a	car	[SEP]	The	woman	is	walking	.

Contradic@on

‣ Sentence	pair	classifier:	feed	in	two	sentences	and	classify	something	
about	their	rela@onship

‣ Why	might	Transformers	be	par@cularly	good	at	sentence	pair	tasks	
compared	to	something	like	a	DAN?

Transformer	Language	Modeling

Transformer	Language	Modeling

I							saw				the				dog

hi

P (w|context) = exp(w · hi)P
w0 exp(w0 · hi)

P (w|context) = softmax(Whi)

‣ W	is	a	(vocab	size)	x	(hidden	size)	matrix;	linear	layer	in	PyTorch	(rows	
are	word	embeddings)

equivalent	to

word	probs

Training	Transformer	LMs

<s>							I							saw				the				dog

‣ Input	is	a	sequence	of	words,	output	is	those	words	shiged	by	one,

I							saw				the				dog		running

‣ Allows	us	to	train	on	predic@ons	across	several	@mesteps	simultaneously	
(similar	to	batching	but	this	is	NOT	what	we	refer	to	as	batching)

Training	Transformer	LMs

I							saw				the				dog

Total	loss	=	sum	of	nega@ve	log	
likelihoods	at	each	posi@on

P(w|context)

loss	=	—	log	P(w*|context)

loss_fcn	=	nn.NLLLoss()	
loss	+=	loss_fcn(log_probs,	ex.output_tensor)

[seq	len,	num	output	classes] [seq	len]

‣ Batching	is	a	liCle	tricky	with	NLLLoss:	need	to	collase	[batch,	seq	len,	num	
classes]	to	[batch	*	seq	len,	num	classes].	You	do	not	need	to	batch

Batched	LM	Training
I	saw	the	dog	running	in	the	park	and	it	looked	very	excited	to	be	there

<s>							I							saw				the				dog

I							saw				the				dog		running

<s>						in						the				park			and

in						the				park			and					it
batch	dim

‣ Mul@ple	sequences	and	mul@ple	
@mesteps	per	sequence

looked	very	excited	to	be

A	Small	Problem	with	Transformer	LMs

<s>							I							saw				the				dog

‣ With	standard	self-aCen@on:	“I”	aCends	to	“saw”	and	the	model	is	
“chea@ng”.	How	do	we	ensure	that	this	doesn’t	happen?

I							saw				the				dog		running

‣ This	Transformer	LM	as	we’ve	described	it	will	easily	achieve	perfect	
accuracy.	Why?

ACen@on	Masking

<s>							
I							
saw				
the				
dog

‣ We	want	to	prohibit

‣ We	want	to	mask	out	everything	in	red	(an	upper	triangular	matrix)

<s>							I							saw				the				dog

Query	words

Key	words

Implemen@ng	in	PyTorch

‣ nn.TransformerEncoder	can	be	built	out	of	nn.TransformerEncoderLayers,	
can	accept	an	input	and	a	mask	for	language	modeling:

‣You	cannot	use	these	for	Part	1,	only	for	Part	2

#	Inside	the	module;	need	to	fill	in	size	parameters	
layers	=	nn.TransformerEncoderLayer([...])	
transformer_encoder	=	nn.TransformerEncoder(encoder_layers,	num_layers=[...])	
[.	.	.]	
#	Inside	forward():	puts	negative	infinities	in	the	red	part	
mask	=	torch.triu(torch.ones(len,	len)	*	float('-inf'),	diagonal=1)	
output	=	transformer_encoder(input,	mask=mask)

LM	Evalua@on

‣ Accuracy	doesn’t	make	sense	—	predic@ng	the	next	word	is	generally	
impossible	so	accuracy	values	would	be	very	low

‣ Evaluate	LMs	on	the	likelihood	of	held-out	data	(averaged	to	
normalize	for	length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity:	exp(average	nega@ve	log	likelihood).	Lower	is	beCer
‣ Suppose	we	have	probs	1/4,	1/3,	1/4,	1/3	for	4	predic@ons
‣ Avg	NLL	(base	e)	=	1.242					Perplexity	=	3.464	<==	geometric	mean	of	
																																																																																									denominators

Preview:	Pre-training	and	BERT
‣ Transformers	are	usually	large	and	you	don’t	want	to	train	them	for	each	
new	task

the		movie		was			great

DT						NN				VBD					JJ

the		movie		was			great

movie		was	great						.

Train	on	language	modeling… then	“fine-tune”	that	model	on	your	
target	task	with	a	new	classifica@on	layer

Transformer	Extensions

Scaling	Laws

Kaplan	et	al.	(2020)‣ Transformers	scale	really	well!

Transformer	Run@me
Tay	et	al.	(2020)‣ Even	though	most	

parameters	and	FLOPs	are	
in	feedforward	layers,	
Transformers	are	s@ll	
limited	by	quadra@c	
complexity	of	self-
aCen@on

‣ Many	ways	proposed	
to	handle	this

Performers

Choromanski	et	al.	(2020)

‣ No	more	len2	term,	but	we	are	fundamentally	approxima@ng	the	
self-aCen@on	mechanism	(cannot	form	A	and	take	the	sogmax)

Longformer

Beltagy	et	al.	(2021)

‣ Use	several	pre-specified	self-aCen@on	paCerns	that	limit	the	number	of	
opera@ons	while	s@ll	allowing	for	aCen@on	over	a	reasonable	set	of	things

‣ Scales	to	4096-length	sequences

Vision	and	RL

‣ DALL-E	1:	learns	a	discrete	“codebook”	and	treats	an	image	as	a	
sequence	of	visual	tokens	which	can	be	modeled	autoregressively,	
then	decoded	back	to	an	image

Ramesh	et	al.	(2021),	Chen	et	al.	(2021)

‣ Decision	Transformer:	does	reinforcement	learning	by	Transformer-
based	modeling	over	a	series	of	ac@ons

‣ Transformers	are	now	being	used	all	over	AI

Takeaways

‣ Transformers	are	going	to	be	the	founda@on	for	the	much	of	the	rest	
of	this	class	and	are	a	ubiquitous	architecture	nowadays

‣ Many	details	to	get	right,	many	ways	to	tweak	and	extend	them,	but	
core	idea	is	the	mul@-head	self	aCen@on	and	their	ability	to	
contextualize	items	in	sequences

‣ Next:	machine	transla@on	and	seq2seq	models	(condi@onal	language	
modeling)

