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Transformers: Position Sensitivity

PR

The ballerina is very excited that she will dance in the show.

> If this is in a longer context, we want words to attend /ocally

» But transformers have no notion of position by default

Vaswani et al. (2017)




Transformers: Position Sensitivity

Transformers

Alammar, The lllustrated Transformer
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attention matrix A (from
assignment)
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> Each row: distribution over
what that token attends to.
E.g., the first “v” attends very
heavily to itself (bright yellow
box)
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> Your task on the HW: assess
if the attentions make sense
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Using Transformers

What do Transformers produce?
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the movie was great

> Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

> Like RNNs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

> Transducer: make some prediction for each element in a sequence

DT NN VBD J
4 4 4 t output y = score for each tag, then softmax
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the movie was great
> Classifier: encode a sequence into a fixed-sized vector and classify that

predict sentiment (matmul + softmax)

average poolin
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paraphrase/compress
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the movie was great

Transformer Uses

predict sentiment (matmul + softmax)

average poolin
& p’_g_< translate

paraphrase/compress
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the movie was great

> Alternative: use a placeholder [CLS] token at the start of the sequence. Because
[CLS] attends to everything with self-attention, it can do the pooling for you!

encoding of [CLS token] — matmul + softmax — predict sentiment

: |
1 i f 1 t

[CLS] the movie was great




Transformer Uses

> Sentence pair classifier: feed in two sentences and classify something
about their relationship

Contradiction
t

[CLS] The woman is driving a car [SEP] The woman is walking .

> Why might Transformers be particularly good at sentence pair tasks
compared to something like a DAN?

Transformer Language Modeling

Transformer Language Modeling

word probs - h:
|  P(w|context) = ZeXp(V\E ’l)h)
, EXpIW' - Ny
h; I#I w 5P
| | equivalent to
t t t t

|  saw the dog P(w|context) = softmax(Wh,;)

> Wis a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)

Training Transformer LMs

|  saw the dog running

t t+ t 1t 1 |

<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one,

> Allows us to train on predictions across several timesteps simultaneously

(similar to batching but this is NOT what we refer to as batching)




Training Transformer LMs
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loss_fcn = nn.NLLLoss()

loss += loss_fcn(log_probs, ex.output_tensor)
[seq len, num output classes] [seq len]

> Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num
classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training
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> Multiple sequences and multiple

timesteps per sequence

A Small Problem with Transformer LMs

> This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

| saw the dog running
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<s> | saw the dog

» With standard self-attention: “I” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

> We want to prohibit

Attention Masking

Key words
<s> | saw the dog
<s> |
| I
Query words  gqw I
the [
dog

> We want to mask out everything in red (an upper triangular matrix)




Implementing in PyTorch

> nn.TransformerEncoder can be built out of nn.TransformerEncoderlLayers,
can accept an input and a mask for language modeling:

# Inside the module; need to fill in size parameters

layers = nn.TransformerEncoderLayer([...])

transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .1

# Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)

output = transformer_encoder(input, mask=mask)

> You cannot use these for Part 1, only for Part 2

LM Evaluation

> Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

> Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)

- Zlog P(w;|wy, ..., wi—1)
S i=1

> Perplexity: exp(average negative log likelihood). Lower is better
> Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

> Avg NLL (base e) = 1.242  Perplexity = 3.464 <== geometric mean of
denominators

Preview: Pre-training and BERT

> Transformers are usually large and you don’t want to train them for each
new task

Train on language modeling... then “fine-tune” that model on your

target task with a new classification layer

movie was great . DT NN VBD JJ
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the movie was great the movie was great

Transformer Extensions




Scaling Laws Transformer Runtime
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Transformers scale really well! Kaplan et al. (2020)

Performers Longformer
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Figure 1: Approximation of the regular attention mechanism AV (before D~ !-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

» Use several pre-specified self-attention patterns that limit the number of
> No more len2 term, but we are fundamentally approximating the operations while still allowing for attention over a reasonable set of things

self-attention mechanism (cannot form A and take the softmax) - Scales to 4096-length sequences

Choromanski et al. (2020) Beltagy et al. (2021)




Vision and RL

> DALL-E 1: learns a discrete “codebook” and treats an image as a
sequence of visual tokens which can be modeled autoregressively,
then decoded back to an image

> Decision Transformer: does reinforcement learning by Transformer-
based modeling over a series of actions

> Transformers are now being used all over Al

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

> Transformers are going to be the foundation for the much of the rest
of this class and are a ubiquitous architecture nowadays

> Many details to get right, many ways to tweak and extend them, but
core idea is the multi-head self attention and their ability to
contextualize items in sequences

> Next: machine translation and seq2seq models (conditional language

modeling)




