CS378: Natural Language Processing Lecture 17: Transformers for Language Modeling, Implementation

Transformers

Transformer Uses

Sentence pair classifier: feed in two sentences and classify something about their relationship

Contradiction

[CLS] The woman is driving a car [SEP] The woman is walking .

Why might Transformers be particularly good at sentence pair tasks compared to something like a DAN?

Transformer Language Modeling

Implementing in PyTorch

 nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

```
# Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]
# Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)
```

You cannot use these for Part 1, only for Part 2

LM Evaluation

- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length) $\frac{1}{2} \sum_{i=1}^{n} \log P(w_i|w_1, \dots, w_{i-1})$

$$\frac{n}{i=1}$$

- Perplexity: exp(average negative log likelihood). Lower is better
 - ▶ Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Transformers scale really well!

Kaplan et al. (2020)

Beltagy et al. (2021)

Vision and RL

- DALL-E 1: learns a discrete "codebook" and treats an image as a sequence of visual tokens which can be modeled autoregressively, then decoded back to an image
- Decision Transformer: does reinforcement learning by Transformerbased modeling over a series of actions
- Transformers are now being used all over AI

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

 Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays

۲

- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences
- Next: machine translation and seq2seq models (conditional language modeling)